Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 18, Issue 11, pp 934–945 | Cite as

Development and current clinical application of ventricular assist devices in China

  • Yue Wu
  • Liang-fan Zhu
  • Yun LuoEmail author
Review
  • 31 Downloads

Abstract

Heart failure has become one of the biggest threats to human health. Transplantation remains the most effective therapy for heart failure, but because of the shortage of donors, it cannot meet the demand. Ventricular assist devices (VADs) were developed to treat heart failure, and have now been clinically applied worldwide. As the country with the largest population, China is also facing the threat of heart failure. However, the development of VADs in China is very slow and is seldom discussed. This paper first talks about the background for VAD development in China. Then several home-developed VADs in China are introduced. The current clinical application status of VADs in China is also presented. Finally the challenge and opportunity for VAD development in China are discussed.

Key words

Ventricular assist devices Heart failure Clinical application 

心室辅助装置在中国的发展和临床应用现状

概 要

由于人口基数巨大, 我国存在大量心力衰竭病人急需治疗, 但心脏供体的数量远远无法满足要求。 因此, 心室辅助装置在我国有广阔的市场需求和应用前景。 目前我国心室辅助装置的发展相比发达国家较为滞后, 临床应用也数量很少, 其高昂的价格是重要制约因素, 我国医疗资源的不 平衡也是影响因素。 我国现已制定各种政策和法规鼓励国产心室辅助装置的发展, 也有科研经费和地方财政进行支持。 国产心室辅助装置的价格预计会大大低于进口心室辅助装置, 一旦投入临床应用, 可以使更多的心力衰竭病人受益。

关键词

心室辅助装置 心力衰竭 临床应用 

CLC number

R1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bui, A.L., Horwich, T.B., Fonarow, G.C., 2011. Epidemiology and risk profile of heart failure. Nat. Rev. Cardiol., 8(1): 30–41. http://dx.doi.org/10.1038/nrcardio.2010.165CrossRefPubMedGoogle Scholar
  2. Chang, Y., Gao, B., 2010. Modeling and identification of an intra-aorta pump. ASAIO J., 56(6):504–509. http://dx.doi.org/10.1097/MAT.0b013e3181efff2dCrossRefPubMedGoogle Scholar
  3. Chang, Y., Gu, K., Gao, B., et al., 2013. Hemodynamic influence of cardiovascular system in intra-aorta pump. J. Beijing Univ. Technol., 39(4):629–633 (in Chinese).Google Scholar
  4. Chen, C., 2016. Could suspended artificial hearts replace heart transplantation? Report on the Legend Star MED-TED Conference, Beijing, China (in Chinese).Google Scholar
  5. Chen, H.B., 2011. Biofunction Study of FW-II Axial Blood Pump for Short-Term Assistance. MD Thesis, Peking Union Medical College, Beijing, China (in Chinese).Google Scholar
  6. Chen, W., Gao, R., Liu, L., et al., 2015. Report on cardiovascular disease in China, 2014. Chin. Circul. J., 30(7): 617–622 (in Chinese). http://dx.doi.org/10.3969/j.issn.1000-3614.2015.07.001Google Scholar
  7. de By, T.M.M.H., Mohacsi, P., Gummert, J., et al., 2015. The European Registry for Patients with Mechanical Circulatory Support (EUROMACS): first annual report. Eur. J. Cardiothorac. Surg., 47(5):770–777. http://dx.doi.org/10.1093/ejcts/ezv096CrossRefPubMedGoogle Scholar
  8. Fan, H., Lu, R., Li, J., et al., 2008. Clinical application of mechanical circulatory support in the treatment of heart failure. Chin. J. Emerg. Med., 16(3):302–305 (in Chinese). http://dx.doi.org/10.3760/j.issn:1671-0282.2007.03.021Google Scholar
  9. Fu, Y., Hu, L., Ruan, X., et al., 2015. A transcutaneous energy transmission system for artificial heart adapting to changing impedance. Artif. Organs, 39(4):378–387. http://dx.doi.org/10.1111/aor.12384CrossRefPubMedGoogle Scholar
  10. Gu, K., Chang, Y., Gao, B., et al., 2014a. Development of ventricular assist devices in China: present status, opportunities and challenges. Eur. J. Cardiothorac. Surg., 46(2):179–185. http://dx.doi.org/10.1093/ejcts/ezu020CrossRefPubMedGoogle Scholar
  11. Gu, K., Gao, B., Chang, Y., et al., 2014b. The hemodynamic effect of phase differences between the BJUT-II ventricular assist device and native heart on the cardiovascular system. Artif. Organs, 38(11):914–923. http://dx.doi.org/10.1111/aor.12298CrossRefPubMedGoogle Scholar
  12. Han, Q., Zou, J., Ruan, X., et al., 2012. A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump. Artif. Organs, 36(8):739–746. http://dx.doi.org/10.1111/j.1525-1594.2012.01467.xCrossRefPubMedGoogle Scholar
  13. Hu, S., Sun, H., Luo, X., et al., 2008. Clinical experience of BVS5000 left ventricular assist devices in heart failure patients. Chin. J. Surg., 46(7):531–533 (in Chinese). http://dx.doi.org/10.3321/j.issn:0529-5815.2008.07.014PubMedGoogle Scholar
  14. Hu, S., Sun, H., Li, L., et al., 2014a. Preliminary clinical evaluation of FW-II axial pump on short-term adjuvant therapy for acute left heart failure. Chin. Circul. J., 30(10): 63 (in Chinese).Google Scholar
  15. Hu, S., Dong, N., Wei, X., et al., 2014b. Report on heart transplantation in China, 2013. Chin. Circul. J., 29(z1): 97 (in Chinese).Google Scholar
  16. Huang, H., Xiao, X., Lu, C., et al., 2013. Development and application of pediatric and adult Luo-Ye ventricular assist devices. Chin. Circul. J., 28(z1):186 (in Chinese).Google Scholar
  17. Hunt, S.A., Frazier, O.H., 1998. Mechanical circulatory support and cardiac transplantation. Circulation, 97(20): 2079–2090. http://dx.doi.org/10.1161/01.CIR.97.20.2079CrossRefPubMedGoogle Scholar
  18. Kirklin, J.K., Naftel, D.C., Pagani, F.D., et al., 2015. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transpl., 34(12):1495–1504. http://dx.doi.org/10.1016/j.healun.2015.10.003CrossRefGoogle Scholar
  19. Kumar, A., Phanwilkar, P.S., 2011. Long-term implantable ventricular assist devices (VADs) and total artificial hearts (TAHs). In: Ducheyne, P. (Ed.), Comprehensive Biomaterials. Elsevier, Amsterdam, p.389–402. http://dx.doi.org/10.1016/B978-0-08-055294-1.00226-9CrossRefGoogle Scholar
  20. Li, G., Zhu, X., Hao, Z., 2010. Study of anatomic fit of micro apex pump and surgical injure in animal implantation experiments. Chin. Med. Eq. J., 31(3):20–22 (in Chinese). http://dx.doi.org/10.3969/j.issn.1003-8868.2010.03.008Google Scholar
  21. Li, G., Zhu, X., Chen, H., et al., 2015. Comparative study of miniature apex axial flow blood pumps with different structures. Chin. Med. Eq. J., 36(7):4–8 (in Chinese). http://dx.doi.org/10.7687/j.issn1003-8868.2015.07.004CrossRefGoogle Scholar
  22. Li, H., Wu, G., Lin, C., et al., 2013. Partial support of the ovine heart with left ventricular assist devices: implication of hemodynamics. Chin. J. Extracorp. Circul., 11(2):103–106, 128 (in Chinese). http://dx.doi.org/10.3969/j.issn.1672-1403.2013.02.012Google Scholar
  23. Lin, C., Wu, G., Liu, X., et al., 2013. In vivo survival evaluation of the ChinaHeart ventricular assist device. Beijing Biomed. Eng., 32(5):472–478 (in Chinese). http://dx.doi.org/10.3969/j.issn.1002-3208.2013.05.06Google Scholar
  24. Liu, T., Zhang, J., Liu, Z., et al., 2015. Experimental research on magnetic and hydrodynamic suspension-centrifugal ventricular auxiliary device. Chin. J. Biomed. Eng., 21(3): 242–246. http://dx.doi.org/10.3760/cma.j.issn.1674-1927.2015.03.010Google Scholar
  25. Liu, X., Wu, G., Xu, C., et al., 2012. In vivo survival evaluation of the ChinaHeart left ventricular assist device. Chin. J. Biomed. Eng., 31(5):736–741. http://dx.doi.org/10.3969/j.issn.0258-8021.2012.05.013Google Scholar
  26. Lobanoff, V.S., Ross, R.R., 2013. Centrifugal Pumps: Design and Application, 2nd Ed. Elsevier, Amsterdam, p.239–247.Google Scholar
  27. Lu, R., Fan, H., Li, J., et al., 2007. Clinical application of mechanical circulatory support in the treatment of end-ofstage heart failure. J. Clin. Cardiol., 23(8):633–634. http://dx.doi.org/10.3969/j.issn.1001-1439.2007.08.028Google Scholar
  28. Luo, X., Hu, S., Sun, H., et al., 2008a. Mechanical circulation support as emergency bridging for heart transplantation. Chin. Med. Surg., 46(14):1073–1075 (in Chinese). http://dx.doi.org/10.3321/j.issn:0529-5815.2008.14.010Google Scholar
  29. Luo, X., Hu, S., Sun, H., et al., 2008b. Clinical application of BVS5000 left ventricular assist device in HF patients in China. Chin. Med. Surg., 121(10):877–880 (in Chinese).Google Scholar
  30. Moreno, S.G., Novielli, N., Cooper, N.J., 2012. Costeffectiveness of the implantable Heart Mate II left ventricular assist device for patients awaiting heart transplantation. J. Heart Lung Transpl., 31(5):450–458. http://dx.doi.org/10.1016/j.healun.2011.10.017CrossRefGoogle Scholar
  31. National Bureau of Statistics of China, 2016. Statistical Communique of the People’s Republic of China on the 2015 National Economic and Social Development (in Chinese). http://www.stats.gov.cn/tjsj/zxfb/201602/t20160229_1323991Google Scholar
  32. Nishimura, T., 2014. Current status of extracorporeal ventricular assist devices in Japan. J. Artif. Organs, 17(3):211–219. http://dx.doi.org/10.1007/s10047-014-0779-8CrossRefPubMedGoogle Scholar
  33. Qian, K., 2009. Artificial heart non-pulsatile ventricular assist device with straight impeller vanes. J. Clin. Rehabilit. Tissue Eng. Res., 13(26):5122–5124 (in Chinese). http://dx.doi.org/10.3969/j.issn.1673-8225.2009.26.027Google Scholar
  34. Qian, K., Xu, Z., Wang, H., 2010. Investigation on applying passive magnetic bearings to impeller left ventricular assist devices (LVAD). 2010 3rd International Conference on Biomedical Engineering and Informatics, IEEE. http://dx.doi.org/10.1109/bmei.2010.5639413Google Scholar
  35. Rong, X., Qin, B., Zhang, J., 2013. Clinical application of ventricular assist devices in refractory heart arrest patient. China Pract. J. Med., 40(21):126–126 (in Chinese). http://dx.doi.org/10.3760/cma.j.issn.1674-4756.2013.21.066Google Scholar
  36. Rose, E.A., Gelijns, A.C., Moskowitz, A.J., et al., 2001. Longterm mechanical left ventricular assistance for end-stage heart failure. N. Engl. J. Med., 345(20):1435–1443. http://dx.doi.org/10.1056/NEJMoa012175CrossRefPubMedGoogle Scholar
  37. Sawa, Y., 2014. Current status of third-generation implantable left ventricular assist devices in Japan, Duraheart and HeartWare. Surg. Today, 45(6):672–681. http://dx.doi.org/10.1007/s00595-014-0957-6CrossRefPubMedGoogle Scholar
  38. State Council of China, 2014. Regulations for Supervision and Management of Medical Devices (in Chinese). http://www. sda.gov.cn/WS01/CL0784/97814Google Scholar
  39. Wang, F., Wu, Q., Jing, T., et al., 2010. Flow patterns and shear stress investigation and in vitro studies of blood pump. 2010 3rd International Conference on Biomedical Engineering and Informatics, IEEE. http://dx.doi.org/10.1109/bmei.2010.5639474Google Scholar
  40. Wu, Q., Zhang, Y., Guo, S., et al., 2004. tiA case using left ventricular mechanical assist devices for bridge-totransplant treatment for 2 years. Chin. J. Surg., 42(24): 1533–1534 (in Chinese). http://dx.doi.org/10.3760/j:issn:0529-5815.2004.24Google Scholar
  41. Wu, Y., Zhu, L., Luo, Y., 2017. Design and hemocompatibility analysis of a double-suction injection suspension blood pump using computational fluid dynamics methods. Artif. Organs, in press. http://dx.doi.org/10.1111/aor.12888Google Scholar
  42. Xiao, X., Fan, R., Chen, A., et al., 2002. The clinical trial of pneumatic pump (Luo-Ye pump) as left ventricular assist device. South China J. Cardiovasc. Dis., 8(1):43–45 (in Chinese). http://dx.doi.org/10.3969/j.issn.1007-9688.2002.01.015Google Scholar
  43. Xiao, X.J., Luo, Z.X., Ye, C.X., et al., 2009. The short-term pulsatile ventricular assist device for postcardiotomy cardiogenic shock: a clinical trial in China. Artif. Organs, 33(4):373–377. http://dx.doi.org/10.1111/j.1525-1594.2009.00729.xCrossRefPubMedGoogle Scholar
  44. Xie, C., Liu, Q., Wu, Y., 2015. The application of the left ventricular support device impella 2.5-assist device and nursing. Chin. J. Nurs., 50(10):1276–1278 (in Chinese). http://dx.doi.org/10.3761/j.issn.0254-1769.2015.10.026Google Scholar
  45. Xu, C., Lin, C., Wu, G., et al., 2012. Study of hemolysis performance for China heart ventricular assist device. China Med. Dev., 27(11):46–49 (in Chinese). http://dx.doi.org/10.3969/j.issn.1674-1633.2012.11.009Google Scholar
  46. Xuan, Y., Chang, Y., Gu, K., et al., 2012. Hemodynamic simulation study of a novel intra-aorta left ventricular assist device. ASAIO J., 58(5):462–469. http://dx.doi.org/10.1097/MAT.0b013e318268eaf7CrossRefPubMedGoogle Scholar
  47. Yan, C., Liang, J., 2015. Perioperative nursing care for highrisk coronary artery interventional therapy with ventricular assist devices support. Chin. Circul. J., 30(z1):163–164 (in Chinese). http://dx.doi.org/10.3969/j.issn.1000-3614.2015.z1.441Google Scholar
  48. Zhang, Q., Gao, B., Gu, K., et al., 2014. The study on hemodynamic effect of varied support models of BJUT-II VAD on coronary artery. ASAIO J., 60(6):643–651. http://dx.doi.org/10.1097/MAT.0000000000000137CrossRefPubMedGoogle Scholar
  49. Zhang, W., Zhang, J., Liu, T., et al., 2014. In vitro hemolysis test and durability test of magnetic and hydrodynamic levitation blood pump. J. Biomed. Eng. Res., 33(1):15–18.Google Scholar
  50. Zhao, J., Hei, F., 2016. Report on cardiac surgery and extracorporeal circulation in China, 2014. Chin. J. Extracorp. Circul., 14(3):130–132 (in Chinese). http://dx.doi.org/10.13498/j.cnki.chin.j.ecc.2016.03.02Google Scholar
  51. Zhou, C., Xiao, X., Zhuang, J., et al., 2011. Animal experiment of pediatric Luo-Ye pneumonic ventricular assist device. Chin. J. Exp. Surg., 28(3):439–441 (in Chinese). http://dx.doi.org/10.3760/cma.j.issn.1001-9030.2011.03.040Google Scholar
  52. Zhu, D., Long, C., Hei, F., et al., 2015. Report on cardiac surgery and extracorporeal circulation in China, 2014. Chin. J. Extracorp. Circul., 13(3):129–131 (in Chinese). http://dx.doi.org/10.13498/j.cnki.chin.j.ecc.2015.03.01Google Scholar
  53. Zhu, L., Wu, Y., Luo, Y., 2016. Experiment evaluation of a novel injection suspended impeller for implantable centrifugal blood pump. Int. J. Appl. Electrom., 52(1–2):525–530. http://dx.doi.org/10.13498/10.3233/JAE-162159Google Scholar
  54. Zhuang, B., Luo, X., Zhang, Y., et al., 2010. Design optimization for a shaft-less double suction mini turbo pump. IOP Conference Series: Earth and Environmental Science, Volume 12, 012049. http://dx.doi.org/10.1088/1755-1315/12/1/012049Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations