Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 18, Issue 11, pp 986–993 | Cite as

Yimu San improves obstetric ability of pregnant mice by increasing serum oxytocin levels and connexin 43 expression in uterine smooth muscle

  • Qi-huan Wang
  • Shuang Zhang
  • Li-meng Qin
  • Wen-jun Zhang
  • Feng-hua Liu
  • Jian-qin Xu
  • Yun-fei MaEmail author
  • Ke-dao TengEmail author
Article

Abstract

Prolonged farrowing remains one of the critical challenges in intensive pig farming. This study aims to explore the effects and mechanism of Yimu San (YMS), a Chinese veterinary medicine micro mist, on delivery ability with mouse models. Thirty-two pregnant mice were randomly divided into a control group and low-YMS, med-YMS, and high-YMS groups. The labor process time and stillbirth rate were recorded, the levels of serum oxytocin and prostaglandin E2 (PGE2) were measured with enzyme-linked immunosorbent assay (ELISA). Contractility measurements of the isolated uterus and the expression of connexin 43 (Cx43) in uterine smooth muscle were evaluated. The results showed that compared with the control group, the birth process time and stillbirth rate in the med-YMS and high-YMS groups were remarkably lower. The in vitro uterine contractions, levels of oxytocin, PGE2, and Cx43 in the med-YMS and high-YMS groups were significantly higher than those in the control group. The differences of the above measurements between the low-YMS group and the control group were not obvious. It can be speculated that YMS could significantly promote labor in pregnant mice by enhancing the levels of oxytocin, Cx43, and PGE2.

Key words

Yimu San Delivery ability Uterine contraction Oxytocin Prostaglandin E2 Connexin 43 

益母散通过增加催产素水平和子宫平滑肌缝隙连接蛋白 43 的表达提高孕鼠分娩能力

概要

目 的

评价益母散对孕鼠分娩能力的促进作用, 并初步探讨其作用机制。

创新点

首次在临近分娩小鼠中证明新中兽医药处方益母散可明显促进孕鼠分娩能力, 且此作用与催产素 和子宫平滑肌缝隙连接蛋白 43 (Cx43) 的高表达 相关。

方 法

将妊娠小鼠分为对照组和益母散低、 中、 高剂量组, 产前 3 天持续灌胃, 统计孕鼠分娩产程和死胎率。 采用离体平滑肌张力试验测定子宫平滑肌张力, 用酶联免疫吸附测定 (ELISA) 方法检测血清中催产素和前列腺素 E2 (PGE2) 含量, 用蛋白免疫印迹 (Western blotting) 及免疫组织化学等方法检测小鼠子宫平滑肌中 Cx43 含量。

结 论

益母散灌服处理能够使小鼠分娩产程缩短和死胎率降低 (图1), 并增强分娩小鼠子宫平滑肌张力 (图2) 。 ELISA 实验结果显示, 益母散灌服处理使分娩小鼠血清催产素水平显著提高 (图3) 。 免疫组化和免疫印迹实验结果显示, 益母散灌服处理使分娩小鼠子宫平滑肌 Cx43 含量显著提高 (图4 和5) 。 综上所述, 益母散具有提高孕鼠分娩能力的作用, 该作用与催产素水平和子宫平滑肌 Cx43 的高表达相关。

关键词

益母散 催产素 前列腺素E2 缝隙连接蛋白43 

CLC number

R282.5 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso-Spilsbury, M., Mota-Rojas, D., Martínez-Burnes, J., et al., 2004. Use of oxytocin in penned sows and its effect on fetal intra-partum asphyxia. Anim. Reprod. Sci., 84(1-2): 157–167. http://dx.doi.org/10.1016/j.anireprosci.2003.11.002CrossRefPubMedGoogle Scholar
  2. Astle, S., Thornton, S., Slater, D.M., 2005. Identification and localization of prostaglandin E2 receptors in upper and lower segment human myometrium during pregnancy. Mol. Hum. Reprod., 11(4):279–287. http://dx.doi.org/10.1093/molehr/gah158CrossRefPubMedGoogle Scholar
  3. Borges, V.F., Bernardi, M.L., Bortolozzo, F.P., et al., 2005. Risk factors for stillbirth and foetal mummification in four Brazilian swine herds. Prev. Vet. Med., 70(3-4): 165–176. http://dx.doi.org/10.1016/j.prevetmed.2005.03.003CrossRefPubMedGoogle Scholar
  4. Bruzzone, R., 2001. Learning the language of cell-cell communication through connexin channels. Genome Biol., 2(11):reports4027. http://dx.doi.org/10.1186/gb-2001-2-11-reports4027Google Scholar
  5. Chan, L.Y., Fu, L., Leung, T.N., et al., 2004. Obstetric outcomes after cervical ripening by multiple doses of vaginal prostaglandin E2. Acta Obstet. Gynecol. Scand., 83(1): 70–74. http://dx.doi.org/10.1111/j.1600-0412.2004.00356.xPubMedGoogle Scholar
  6. Cluff, A.H., Byström, B., Klimaviciute, A., et al., 2006. Prolonged labour associated with lower expression of syndecan 3 and connexin 43 in human uterine tissue. Reprod. Biol. Endocrinol., 4:24–32. http://dx.doi.org/10.1186/1477-7827-4-24CrossRefPubMedPubMedCentralGoogle Scholar
  7. Contreras, J.E., Sáez, J.C., Bukauskas, F.F., et al., 2003. Gating and regulation of connexin 43 (Cx43) hemichannels. Proc. Natl. Acad. Sci. USA, 100(20):11388–11393. http://dx.doi.org/10.1073/pnas.1434298100CrossRefPubMedPubMedCentralGoogle Scholar
  8. Devost, D., Zingg, H.H., 2007. Novel in vitro system for functional assessment of oxytocin action. Am. J. Physiol. Endocrinol. Metab., 292(1):e1-E6. http://dx.doi.org/10.1152/ajpendo.00529.2005CrossRefPubMedGoogle Scholar
  9. Flenady, V., Reinebrant, H.E., Liley, H.G., et al., 2014. Oxytocin receptor antagonists for inhibiting preterm labour. Cochrane Database Syst. Rev., 6:CD004452. http://dx.doi.org/10.1002/14651858.CD004452.pub3Google Scholar
  10. Frey, H.A., Tuuli, M.G., England, S.K., et al., 2015. Factors associated with higher oxytocin requirements in labor. J. Matern. Fetal Neonatal Med., 28(13):1614–1619. http://dx.doi.org/10.3109/14767058.2014.963046CrossRefPubMedGoogle Scholar
  11. Gilbert, G.L., 1999. Oxytocin secretion and management of parturition in the pig. Reprod. Domest. Anim., 34(3-4): 193–200. http://dx.doi.org/10.1111/j.1439-0531.1999.tb01240.xCrossRefGoogle Scholar
  12. González-Lozano, M., Mota-Rojas, D., Velázquez-Armenta, E.Y., et al., 2009. Obstetric and fetal outcomes in dystocic and eutocic sows to an injection of exogenous oxytocin during farrowing. Can. Vet. J., 50(12):1273–1277.PubMedPubMedCentralGoogle Scholar
  13. Goodenough, D.A., Paul, D.L., 2003. Beyond the gap: functions of unpaired connexon channels. Nat. Rev. Mol. Cell Biol., 4(4):285–294. http://dx.doi.org/10.1038/nrm1072CrossRefPubMedGoogle Scholar
  14. Holtz, W., Schmidt-Baulain, R., Meyer, H., et al., 1990. Control of prostaglandin-induced parturition in sows by injection of the ß-adrenergic blocking agent carazolol or carazolol and oxytocin. J. Anim. Sci., 68(12):3967–3971. http://dx.doi.org/10.2527/1990.68123967xCrossRefPubMedGoogle Scholar
  15. Jiang, J.X., Siller-Jackson, A.J., Burra, S., 2007. Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress. Front. Biosci., 12:1450-1462. http://dx.doi.org/10.2741/2159CrossRefPubMedPubMedCentralGoogle Scholar
  16. Keirse, M.J.N.C., 2006. Natural prostaglandins for induction of labor and preinduction cervical ripening. Clin. Obstet. Gynecol., 49(3):609–626. http://dx.doi.org/10.1097/00003081-200609000-00020CrossRefPubMedGoogle Scholar
  17. Kota, S.K., Gayatri, K., Jammula, S., et al., 2013. Endocrinology of parturition. Indian J. Endocrinol. Metab., 17(1): 50–59. http://dx.doi.org/10.4103/2230-8210.107841CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kuwabara, Y., Takeda, S., Mizuno, M., et al., 1987. Oxytocin levels in maternal and fetal plasma, amniotic fluid, and neonatal plasma and urine. Arch. Gynecol. Obstet., 241(1): 13–23. http://dx.doi.org/10.1007/BF00931436CrossRefPubMedGoogle Scholar
  19. Maass, K., Ghanem, A., Kim, J.S., et al., 2004. Defective epidermal barrier in neonatal mice lacking the C-terminal region of connexin 43. Mol. Biol. Cell, 15(10):4597–4608. http://dx.doi.org/10.1091/mbc.E04-04-0324CrossRefPubMedPubMedCentralGoogle Scholar
  20. Morsy, M.A.M., Isohama, Y., Miyata, T., 2001. Prostaglandin E2 increases surfactant secretion via the EP1 receptor in rat alveolar type II cells. Eur. J. Pharmacol., 426(1-2): 21–24. http://dx.doi.org/10.1016/S0014-2999(01)01211-0CrossRefPubMedGoogle Scholar
  21. Mota-Rojas, D., Martínez-Burnes, J., Trujillo-Ortega, M.E., et al., 2002. Effect of oxytocin treatment in sows on umbilical cord morphology, meconium staining, and neonatal mortality of piglets. Am. J. Vet. Res., 63(11):1571–1574. http://dx.doi.org/10.2460/ajvr.2002.63.1571CrossRefPubMedGoogle Scholar
  22. Oliviero, C., Heinonen, M., Valros, A., et al., 2010. Environmental and sow-related factors affecting the duration of farrowing. Anim. Reprod. Sci., 119(1–2):85–91. http://dx.doi.org/10.1016/j.anireprosci.2009.12.009CrossRefPubMedGoogle Scholar
  23. Olson, D.M., 2003. The role of prostaglandins in the initiation of parturition. Best Pract. Res. Clin. Obstet. Gynaecol., 17(5):717–730. http://dx.doi.org/10.1016/S1521-6934(03)00069-5CrossRefPubMedGoogle Scholar
  24. Orsino, A., Taylor, C.V., Lye, S.J., 1996. Connexin-26 and connexin-43 are differentially expressed and regulated in the rat myometrium throughout late pregnancy and with the onset of labor. Endocrinology, 137(5):1545–1553. http://dx.doi.org/10.1210/endo.137.5.8612484CrossRefPubMedGoogle Scholar
  25. Ou, C.W., Orsino, A., Lye, S.J., 1997. Expression of connexin-43 and connexin-26 in the rat myometrium during pregnancy and labor is differentially regulated by mechanical and hormonal signals. Endocrinology, 138(12):5398–5407. http://dx.doi.org/10.1210/endo.138.12.5624CrossRefPubMedGoogle Scholar
  26. Plotkin, L.I., Bellido, T., 2013. Beyond gap junctions: connexin 43 and bone cell signaling. Bone, 52(1):157–166. http://dx.doi.org/10.1016/j.bone.2012.09.030CrossRefPubMedGoogle Scholar
  27. Tong, D., Lu, X., Wang, H.X., et al., 2009. A dominant loss-of-function GJA1 (Cx43) mutant impairs parturition in the mouse. Biol. Reprod., 80(6):1099–1106. http://dx.doi.org/10.1095/biolreprod.108.071969CrossRefPubMedPubMedCentralGoogle Scholar
  28. Unlugedik, E., Alfaidy, N., Holloway, A., et al., 2010. Expression and regulation of prostaglandin receptors in the human placenta and fetal membranes at term and preterm. Reprod. Fertil. Dev., 22(5):796–807. http://dx.doi.org/10.1071/RD09148CrossRefPubMedGoogle Scholar
  29. Wang, Q.H., Teng, K.D., Liu, F.H., et al., 2016. The effects of Yimu San on labor capacity of pregnant swine. Heilongjiang Anim. Sci. Vet. Med., 2016(11):176–178, 180 (in Chinese). http://dx.doi.org/10.13881/j.cnki.hljxmsy.2016.2121Google Scholar
  30. Zhou, B.H., Liu, R.X., Jiang, G.J., et al., 2010. Effects of ‘Yimu shenghua san’ on changes of placental hormones in retained placenta cows. Chin. J. Vet. Sci., 30(7): 988–991 (in Chinese). http://dx.doi.org/10.16303/j.cnki.1005-4545.2010.07.010Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Veterinary MedicineChina Agricultural UniversityBeijingChina
  2. 2.College of Animal Science and TechnologyBeijing University of AgricultureBeijingChina

Personalised recommendations