Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 18, Issue 9, pp 816–824 | Cite as

Antimelanogenic effects of Inula britannica flower petal extract fermented by Lactobacillus plantarum KCCM 11613P

  • Eun-hye Park
  • Won-young Bae
  • Jae-yeon Kim
  • Kee-tae Kim
  • Hyun-dong PaikEmail author
Article

Abstract

The inhibitory effects of Lactobacillus plantarum-fermented and non-fermented Inula britannica extracts on the tyrosinase activity were comparatively investigated to examine whether and how they improve the whitening activity, and the contents of total flavonoids and polyphenolics as bioactive compounds were determined. The skin whitening activity using in vitro or ex vivo tyrosinase and L-3,4-dihydroxyphenylalanine (L-DOPA) staining was examined. The total flavonoid content (TFC) was increased by 13.4% after 72 h-fermentation. The viabilities of the B16F10 cells treated with the fermented and non-fermented control extracts were 100.26% and 92.15% at 500 μg/ml, respectively. In addition, the inhibition of tyrosinase activity was increased by the fermented samples from 29.33% to 41.74% following fermentation for up to 72 h. The tyrosinase activity of the untreated control group was increased to 145.69% in B16F10 cells. The results showed that I. britannica fermented by L. plantarum dose-dependently inhibited tyrosinase activity, which was stimulated by α-melanocyte stimulating hormone. These results suggest that lactic fermented I. britannica extracts can be used as effective skin-whitening materials.

Key words

Inula britannica Flavonoid Lactobacillus plantarum Antioxidant Tyrosinase inhibitor 

植物乳杆菌KCCM 11613P 发酵的旋覆花花瓣提 取物的抗黑素生成的作用

中文概要

目的

研究植物乳杆菌发酵对旋覆花花瓣提取物对酪氨 酸酶的抑制效果,为开发旋覆花提取物作为潜在 的皮肤增白成分提供依据。

创新点

发现旋覆花植物乳杆菌发酵的提取物可以作为有 效的美白材料。

方法

比较研究了植物乳杆菌发酵的旋覆花花瓣提取物 对酪氨酸酶活性的抑制作用,并测定了提取物中 总黄酮和多酚类化合物的含量。通过体外酪氨酸 酶和左旋多巴(L-DOPA)染色来测定其对皮肤 的美白活性。

结论

旋覆花花瓣经过72 小时的发酵后,其提取物中 总黄酮含量提高13.4%。采用500 μg/ml 发酵和未 发酵的提取物处理B16F10 细胞,细胞活性分别 为100.26%和92.15%。此外,发酵72 小时后, 该提取物对酪氨酸酶活性的抑制率由29.33%上 升到41.74%。未处理的对照组B16F10 细胞酪氨 酸酶活性增加到145.69%。结果表明,旋覆花发 酵提取物对酪氨酸酶活性呈剂量依赖性抑制是 促黑激素(α-MSH)的刺激引起。旋覆花植物乳 杆菌发酵的提取物可以作为有效的美白材料。

关键词

旋覆花 类黄酮 植物乳杆菌 抗氧化剂 酪氨酸酶抑制剂 

CLC number

Q946 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, N., Zhou, Z., Zhu, N., et al., 2005. Antioxidative flavonoids from the flower of Inula britannica. J. Food Lipids, 12(2):141–149. http://dx.doi.org/10.1111/j.1745-4522.2005.00012.xCrossRefGoogle Scholar
  2. Bourdichon, F., Casaregola, S., Farrok, C., et al., 2012. Food fermentations: microorganisms with technological beneficial use. Int. J. Food Microbiol., 154(3):87–97. http://dx.doi.org/10.1016/j.ijfoodmicro.2011.12.030CrossRefPubMedGoogle Scholar
  3. Chakraborty, A.K., Platt, J.T., Kim, K.K., et al., 1996. Polymerization of 5,6-dihydroxyindole-2-carboxylic acid to melanin by the pmel 17/Silver locus protein. Eur. J. Biochem., 236(1):180–188. http://dx.doi.org/10.1111/j.1432-1033.1996.t01-1-00180.xCrossRefPubMedGoogle Scholar
  4. Chan, Y.Y., Kim, K.H., Cheah, S.H., 2011. Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J. Ethnopharmacol., 137(3):1183–1188. http://dx.doi.org/10.1016/j.jep.2011.07.050CrossRefPubMedGoogle Scholar
  5. Dong, J., Zhao, L., Cai, L., et al., 2014. Antioxidant activities and phenolics of fermented Bletilla formosana with eight plant pathogen fungi. J. Biosci. Bioeng., 118(4):396–399. http://dx.doi.org/10.1016/j.jbiosc.2014.03.003CrossRefPubMedGoogle Scholar
  6. Dueñas, M., Fernández, D., Hernández, T., et al., 2005. Bioactive phenolic compounds of cowpeas (Vigna sinensis L.). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. J. Sci. Food Agric., 85(2):297–304. http://dx.doi.org/10.1002/jsfa.1924CrossRefGoogle Scholar
  7. Gilchrest, B.A., Eller, M.S., 1999. DNA photodamage stimulates melanogenesis and other photoprotective responses. J. Invest. Dermatol. Symp. Proc., 4(1):35–40. http://dx.doi.org/10.1038/sj.jidsp.5640178CrossRefGoogle Scholar
  8. Gillbro, J.M., Olsson, M.J., 2011. The melanogenesis and mechanisms of skin-lightening agents—existing and new approaches. Int. J. Cosmet. Sci., 33(3):210–221. http://dx.doi.org/10.1111/j.1468-2494.2010.00616.xCrossRefPubMedGoogle Scholar
  9. Goodall, T., Buffey, J.A., Rennie, I.G., 1994. Effect of melanocyte stimulating hormone on human cultured choroidal melanocytes, uveal melanoma cells, and retinal epithelial cells. Invest. Ophth. Vis. Sci., 35(3):826–837.Google Scholar
  10. Hocker, T.L., Singh, M.K., Tsao, H., 2008. Melanoma genetics and therapeutic approaches in the 21st century: moving from the benchside to the bedside. J. Invest. Dermatol., 128(11):2575–2595. http://dx.doi.org/10.1038/jid.2008.226CrossRefPubMedGoogle Scholar
  11. Huang, M.H., Tai, H.M., Wang, B.S., et al., 2013. Inhibitory effects of water extract of Flos Inulae on mutation and tyrosinase. Food Chem., 139(1-4):1015–1020. http://dx.doi.org/10.1016/j.foodchem.2013.01.066CrossRefPubMedGoogle Scholar
  12. Khan, A.L., Hussain, J., Hamayun, M., et al., 2010. Secondary metabolites from Inula britannica L. and their biological activities. Molecules, 15(3):1562–1577. http://dx.doi.org/10.3390/molecules15031562CrossRefPubMedGoogle Scholar
  13. Kim, J.S., Lee, J.H., Surh, J., et al., 2016. Aglycone isoflavones and exopolysaccharides produced by Lactobacillus acidophilus in fermented soybean paste. Prev. Nutr. Food Sci., 21(2):117–123. http://dx.doi.org/10.3746/pnf.2016.21.2.117CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kim, Y.J., Uyama, H., 2005. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci. CMLS, 62(15):1707–1723. http://dx.doi.org/10.1007/s00018-005-5054-yCrossRefPubMedGoogle Scholar
  15. Kubo, I., Chen, Q.X., Nihei, K., 2003. Molecular design of antibrowning agents: antioxidative tyrosinase inhibitors. Food Chem., 81(2):241–247. http://dx.doi.org/10.1016/S0308-8146(02)00418-1CrossRefGoogle Scholar
  16. Lee, M.H., Lin, Y.P., Hsu, F.L., et al., 2006. Bioactive constituents of Spatholobus suberectus in regulating tyrosinase-related proteins and mRNA in HEMn cells. Phytochemistry, 67(12):1262–1270. http://dx.doi.org/10.1016/j.phytochem.2006.05.008CrossRefPubMedGoogle Scholar
  17. Lee, N.K., Jeewanthi, R.K.C., Park, E.H., et al., 2016. Physicochemical and antioxidant properties of Cheddar-type cheese fortified with Inula britannica extract. J. Dairy Sci., 99(1):83–88. http://dx.doi.org/10.3168/jds.2015-9935CrossRefPubMedGoogle Scholar
  18. Lin, J.Y., Tang, C.Y., 2007. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem., 101(1):140–147. http://dx.doi.org/10.1016/j.foodchem.2006.01.014CrossRefGoogle Scholar
  19. Liu, C.T., Erh, M.H., Lin, S.P., et al., 2016. Enrichment of two isoflavone aglycones in black soymilk by Rhizopus oligosporus NTU 5 in a plastic composite support bioreactor. J. Sci. Food Agric., 96(11):3779–3786. http://dx.doi.org/10.1002/jsfa.7569CrossRefPubMedGoogle Scholar
  20. Más, J.S., Gerritsen, I., Hahmann, C., et al., 2003. Rate limiting factors in melanocortin 1 receptor signalling through the cAMP pathway. Pigment Cell Res., 16(5):540–547. http://dx.doi.org/10.1034/j.1600-0749.2003.00073.xCrossRefPubMedGoogle Scholar
  21. Provance, D.W., Wei, M., Ipe, V., et al., 1996. Cultured melanocytes from dilute mutant mice exhibit dendritic morphology and altered melanosome distribution. Proc. Natl. Acad. Sci. USA, 96:14554–14558. http://dx.doi.org/10.1073/pnas.93.25.14554CrossRefGoogle Scholar
  22. Smit, N., Vicanova, J., Pavel, S., 2009. The hunt for natural skin whitening agents. Int. J. Mol. Sci., 10(12):5326–5349. http://dx.doi.org/10.3390/ijms10125326CrossRefPubMedPubMedCentralGoogle Scholar
  23. Torino, M.I., Limón, R.I., Martínez-Villaluenga, C., et al., 2013. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem., 136(2):1030–1037. http://dx.doi.org/10.1016/j.foodchem.2012.09.015CrossRefPubMedGoogle Scholar
  24. Tsai, C.C., Chan, C.F., Huang, W.Y., et al., 2013. Applications of Lactobacillus rhamnosus spent culture supernatant in cosmetic antioxidation, whitening and moisture retention applications. Molecules, 18(11):14161–14171. http://dx.doi.org/10.3390/molecules181114161CrossRefPubMedGoogle Scholar
  25. Videira, I.F.D.S., Moura, D.F., Magina, S., 2013. Mechanisms regulating melanogenesis. An. Bras. Dermatol., 88(1): 76–83. http://dx.doi.org/10.1590/S0365-05962013000100009CrossRefPubMedPubMedCentralGoogle Scholar
  26. Wang, B., Lin, S.Y., Shen, Y.Y., et al., 2015. Pure total flavonoids from Citrus paradisi Macfadyen act synergistically with arsenic trioxide in inducing apoptosis of Kasumi-1 leukemia cells in vitro. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(7):580–585. http://dx.doi.org/10.1631/jzus.B1400234CrossRefGoogle Scholar
  27. Wang, K.H., Lin, R.D., Hsu, F.L., et al., 2006. Cosmetic applications of selected traditional Chinese herbal medicines. J. Ethnopharmacol., 106(3):353–359. http://dx.doi.org/10.1016/j.jep.2006.01.010CrossRefPubMedGoogle Scholar
  28. Wang, X., Wei, Y., Yuan, S., et al., 2006. Potential anticancer activity of litchi fruit pericarp extract against hepatocellular carcinoma in vitro and in vivo. Cancer Lett., 239(1):144–150. http://dx.doi.org/10.1016/j.canlet.2005.08.011CrossRefPubMedGoogle Scholar
  29. Wu, S.C., Su, Y.S., Cheng, H.Y., 2011. Antioxidant properties of Lactobacillus-fermented and non-fermented Graptopetalum paraguayense E. Walther at different stages of maturity. Food Chem., 129(3):804–809. http://dx.doi.org/10.1016/j.foodchem.2011.05.025CrossRefPubMedGoogle Scholar
  30. Xing, Y., Cai, L., Yin, T.P., et al., 2016. Improving the antioxidant activity and enriching salvianolic acids by the fermentation of Salvia miltiorrhizae with Geomyces luteus. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 17(5):391–398. http://dx.doi.org/10.1631/jzus.B1500264CrossRefGoogle Scholar
  31. Yang, J., Ji, Y., Park, H., Lee, J., et al., 2014. Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel.). Int. J. Food. Microbiol., 191:164–171. http://dx.doi.org/10.1016/j.ijfoodmicro.2014.09.016CrossRefPubMedGoogle Scholar
  32. Yang, S., Fan, R., Shi, Z., et al., 2015. Identification of a novel microRNA important for melanogenesis in alpaca (Vicugna pacos). J. Anim. Sci., 93(4):1622–1631. http://dx.doi.org/10.2527/jas.2014-8404CrossRefPubMedGoogle Scholar
  33. Zhang, J.Q., Shi, L., Xu, X.N., et al., 2014. Therapeutic detoxification of quercetin against carbon tetrachlorideinduced acute liver injury in mice and its mechanism. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 15(12): 1039–1047. http://dx.doi.org/10.1631/jzus.B1400104CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Food Science and Biotechnology of Animal ResourcesKonkuk UniversitySeoulKorea
  2. 2.Bio/Molecular Informatics CenterKonkuk UniversitySeoulKorea

Personalised recommendations