Journal of Zhejiang University SCIENCE B

, Volume 14, Issue 8, pp 688–695 | Cite as

Metabolic remodeling in chronic heart failure

  • Jing Wang
  • Tao GuoEmail author


Although the management of chronic heart failure (CHF) has made enormous progress over the past decades, CHF is still a tremendous medical and societal burden. Metabolic remodeling might play a crucial role in the pathophysiology of CHF. The characteristics and mechanisms of metabolic remodeling remained unclear, and the main hypothesis might include the changes in the availability of metabolic substrate and the decline of metabolic capability. In the early phases of the disease, metabolism shifts toward carbohydrate utilization from fatty acids (FAs) oxidation. Along with the progress of the disease, the increasing level of the hyperadrenergic state and insulin resistance cause the changes that shift back to a greater FA uptake and oxidation. In addition, a growing body of experimental and clinical evidence suggests that the improvement in the metabolic capability is likely to be more significant than the selection of the substrate.

Key words

Chronic heart failure (CHF) Metabolic remodeling Metabolic substrate Metabolic capability 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abozguia, K., Clarke, K., Lee, L., Frenneaux, M., 2006. Modification of myocardial substrate use as a therapy for heart failure. Nat. Clin. Pract. Cardiovasc. Med., 3(9): 490–498. [doi:10.1038/ncpcardio0583]PubMedCrossRefGoogle Scholar
  2. Abozguia, K., Shivu, G.N., Ahmed, I., Phan, T.T., Frenneaux, M.P., 2009. The heart metabolism: pathophysiological aspects in ischaemia and heart failure. Curr. Pharm. Des., 15(8):827–835. [doi:10.2174/138161209787582101]PubMedCrossRefGoogle Scholar
  3. Arany, Z., He, H., Lin, J., Hoyer, K., Handschin, C., Toka, O., Ahmad, F., Matsui, T., Chin, S., Wu, P.H., et al., 2005. Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab., 1(4):259–271. [doi:10.1016/j.cmet.2005.03.002]PubMedCrossRefGoogle Scholar
  4. Ardehali, H., Sabbah, H.N., Burke, M.A., Sarma, S., Liu, P.P., Cleland, J.G., Maggioni, A., Fonarow, G.C., Abel, E.D., Campia, U., et al., 2012. Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur. J. Heart Fail., 14(2):120–129. [doi:10.1093/eurjhf/ hfr173]PubMedCrossRefGoogle Scholar
  5. Ashrafian, H., Frenneaux, M.P., 2007. Metabolic modulation in heart failure: the coming of age. Cardiovasc. Drugs Ther., 21(1):5–7. [doi:10.1007/s10557-007-6000-z]PubMedCrossRefGoogle Scholar
  6. Azevedo, P.S., Minicucci, M.F., Santos, P.P., Paiva, S.A., Zornoff, L.A., 2013. Energy metabolism in cardiac remodeling and heart failure. Cardiol. Rev., 21(3): 135–140. [doi:10.1097/CRD.0b013e318274956d]PubMedCrossRefGoogle Scholar
  7. Azizi-Namini, P., Ahmed, M., Yan, A.T., Keith, M., 2012. The role of B vitamins in the management of heart failure. Nutr. Clin. Pract., 27(3):363–374. [doi:10.1177/0884533 612444539]PubMedCrossRefGoogle Scholar
  8. Beauloye, C., Bertrand, L., Horman, S., Hue, L., 2011. AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc. Res., 90(2):224–233. [doi:10.1093/cvr/cvr034]PubMedCrossRefGoogle Scholar
  9. Beer, M., Seyfarth, T., Sandstede, J., Landschutz, W., Lipke, C., Köstler, H., von Kienlin, M., Harre, K., Hahn, D., Neubauer, S., 2002. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J. Am. Coll. Cardiol., 40(7):1267–1274. [doi:10.1016/ S0735-1097(02)02160-5]PubMedCrossRefGoogle Scholar
  10. Cleland, J.G.F., Daubert, J.C., Erdmann, E., Freemantle, N., Gras, D., Kappenberger, L., Tavazzi, L., 2005. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med., 352(15):1539–1549. [doi:10.1056/NEJMoa050496]PubMedCrossRefGoogle Scholar
  11. Dávila-Román, V.G., Vedala, G., Herrero, P., de las Fuentes, L., Rogers, J.G., Kelly, D.P., Gropler, R.J., 2002. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol., 40(2):271–277. [doi:10.1016/S0735-1097(02)01967-8]PubMedCrossRefGoogle Scholar
  12. Decherd, G., Visscher, M.B., 1934. Energy metabolism of the failing heart. J. Exp. Med., 59(2):195–199.PubMedCrossRefGoogle Scholar
  13. de las Fuentes, L., Herrero, P., Peterson, L.R., Kelly, D.P., Gropler, R.J., Dávila-Román, V.G., 2003. Myocardial fatty acid metabolism: independent predictor of left ventricular mass in hypertensive heart disease. Hypertension, 41(1):83–87. [doi:10.1161/01.HYP. 0000047668.48494.39]PubMedCrossRefGoogle Scholar
  14. Dhalla, N.S., Saini-Chohan, H.K., Rodriguez-Leyva, D., Elimban, V., Dent, M.R., Tappia, P.S., 2009. Subcellular remodelling may induce cardiac dysfunction in congestive heart failure. Cardiovasc. Res., 81(3):429–438. [doi:10.1093/cvr/cvn281]PubMedCrossRefGoogle Scholar
  15. Dillon, L.M., Rebelo, A.P., Moraes, C.T., 2012. The role of PGC-1 coactivators in aging skeletal muscle and heart. IUBMB. Life, 64(3):231–241. [doi:10.1002/iub.608]PubMedCrossRefGoogle Scholar
  16. Dinicolantonio, J.J., Lavie, C.J., Fares, H., Menezes, A.R., O’Keefe, J.H., 2013. L-carnitine in the secondary prevention of cardiovascular disease: systematic review and meta-analysis. Mayo Clin. Proc., 88(6):544–551. [doi:10.1016/j.mayocp.2013.02.007]PubMedCrossRefGoogle Scholar
  17. Doenst, T., Abel, E.D., 2011. Spotlight on metabolic remodelling in heart failure. Cardiovasc. Res., 90(2): 191–193. [doi:10.1093/cvr/cvr077]PubMedCrossRefGoogle Scholar
  18. Finck, B.N., Kelly, D.P., 2006. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest., 116(3):615–622. [doi:10.1172/JCI27794]PubMedCrossRefGoogle Scholar
  19. Giordano, F.J., 2005. Oxygen, oxidative stress, hypoxia, and heart failure. J. Clin. Invest., 115(3):500–508. [doi:10. 1172/JCI24408]PubMedGoogle Scholar
  20. Hanninen, S.A., Darling, P.B., Sole, M.J., Barr, A., Keith, M.E., 2006. The prevalence of thiamin deficiency in hospitalized patients with congestive heart failure. J. Am. Coll. Cardiol., 47(2):354–361. [doi:10.1016/j.jacc.2005. 08.060]PubMedCrossRefGoogle Scholar
  21. Hesselink, M.K., Schrauwen, P., 2005. Uncoupling proteins in the failing human heart: friend or foe? Lancet, 365(9457): 385–386. [doi:10.1016/S0140-6736(05)17823-4]PubMedGoogle Scholar
  22. Hirsch, G.A., Bottomley, P.A., Gerstenblith, G., Weiss, R.G., 2012. Allopurinol acutely increases adenosine triphospate energy delivery in failing human hearts. J. Am. Coll. Cardiol., 59(9):802–808. [doi:10.1016/j.jacc.2011.10.895]PubMedCrossRefGoogle Scholar
  23. Hunt, S.A., Abraham, W.T., Chin, M.H., Feldman, A.M., Francis, G.S., Ganiats, T.G., Jessup, M., Konstam, M.A., Mancini, D.M., Michl, K., et al., 2009. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J. Am. Coll. Cardiol., 53(15):e1–e90. [doi:10.1016/j.jacc.2008.11.013]PubMedCrossRefGoogle Scholar
  24. Huss, J.M., Kelly, D.P., 2005. Mitochondrial energy metabolism in heart failure: a question of balance. J. Clin. Invest., 115(3):547–555. [doi:10.1172/JCI24405]PubMedGoogle Scholar
  25. Karamanlidis, G., Nascimben, L., Couper, G.S., Shekar, P.S., del Monte, F., Tian, R., 2010. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ. Res., 106(9):1541–1548. [doi:10.1161/circresaha. 109.212753]PubMedCrossRefGoogle Scholar
  26. Karbowska, J., Kochan, Z., Smolenski, R.T., 2003. Peroxisome proliferator-activated receptor α is downregulated in the failing human heart. Cell Mol. Biol. Lett., 8(1):49–53.PubMedGoogle Scholar
  27. Kehat, I., Molkentin, J.D., 2010. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation, 122(25):2727–2735. [doi:10. 1161/CIRCULATIONAHA.110.942268]PubMedCrossRefGoogle Scholar
  28. Kemp, C.D., Conte, J.V., 2012. The pathophysiology of heart failure. Cardiovasc. Pathol., 21(5):365–371. [doi:10. 1016/j.carpath.2011.11.007]PubMedCrossRefGoogle Scholar
  29. Kolwicz, S.C.Jr., Tian, R., 2011. Glucose metabolism and cardiac hypertrophy. Cardiovasc. Res., 90(2):194–201. [doi:10.1093/cvr/cvr071]PubMedCrossRefGoogle Scholar
  30. Lai, L., Leone, T.C., Zechner, C., Schaeffer, P.J., Kelly, S.M., Flanagan, D.P., Medeiros, D.M., Kovacs, A., Kelly, D.P., 2008. Transcriptional coactivators PGC-1α and PGC-1β control overlapping programs required for perinatal maturation of the heart. Genes. Dev., 22(14):1948–1961. [doi:10.1101/gad.1661708]PubMedCrossRefGoogle Scholar
  31. Ledderose, C., Kreth, S., Beiras-Fernandez, A., 2011. Ghrelin, a novel peptide hormone in the regulation of energy balance and cardiovascular function. Recent Pat. Endocr. Metab. Immune Drug Discov., 5(1):1–6. [doi:10.2174/ 187221411794351897]PubMedCrossRefGoogle Scholar
  32. Lionetti, V., Stanley, W.C., Recchia, F.A., 2011. Modulating fatty acid oxidation in heart failure. Cardiovasc. Res., 90(2):202–209. [doi:10.1093/cvr/cvr038]PubMedCrossRefGoogle Scholar
  33. Marsin, A.S., Bertrand, L., Rider, M.H., Deprez, J., Beauloye, C., Vincent, M.F., van den Berghe, G., Carling, D., Hue, L., 2000. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol., 10(20):1247–1255. [doi:10. 1016/S0960-9822(00)00742-9]PubMedCrossRefGoogle Scholar
  34. Martin, M.A., Gomez, M.A., Guillen, F., Bornstein, B., Campos, Y., Rubio, J.C., de la Calzada, C.S., Arenas, J., 2000. Myocardial carnitine and carnitine palmitoyltransferase deficiencies in patients with severe heart failure. Biochim. Biophys. Acta Mol. Basis Dis., 1502(3):330–336. [doi:10.1016/S0925-4439(00)00061-2]CrossRefGoogle Scholar
  35. McMurray, J.J., Adamopoulos, S., Anker, S.D., Auricchio, A., Bohm, M., Dickstein, K., Falk, V., Filippatos, G., Fonseca, C., Gomez-Sanchez, M.A., et al., 2012. ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012. Eur. Heart J., 33(14): 1787–1847. [doi:10.1093/eurheartj/ehs104]PubMedCrossRefGoogle Scholar
  36. Murray, A.J., Edwards, L.M., Clarke, K., 2007. Mitochondria and heart failure. Curr. Opin. Clin. Nutr. Metab. Care, 10(6):704–711. [doi:10.1097/MCO.0b013e3282f0ecbe]PubMedCrossRefGoogle Scholar
  37. Nagoshi, T., Yoshimura, M., Rosano, G.M., Lopaschuk, G.D., Mochizuki, S., 2011. Optimization of cardiac metabolism in heart failure. Curr. Pharm. Des., 17(35):3846–3853.PubMedCrossRefGoogle Scholar
  38. Neubauer, S., 2007. The failing heart-an engine out of fuel. N. Engl. J. Med., 356(11):1140–1151. [doi:10.1056/ NEJMra063052]PubMedCrossRefGoogle Scholar
  39. Neubauer, S., Horn, M., Cramer, M., Harre, K., Newell, J.B., Peters, W., Pabst, T., Ertl, G., Hahn, D., Ingwall, J.S., et al., 1997. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation, 96(7):2190–2196. [doi:10.1161/ 01.CIR.96.7.2190]PubMedCrossRefGoogle Scholar
  40. Opie, L.H., 2012. Allopurinol for heart failure: novel mechanisms. J. Am. Coll. Cardiol., 59(9):809–812. [doi:10.1016/j.jacc.2011.09.072]PubMedCrossRefGoogle Scholar
  41. Opie, L.H., Knuuti, J., 2009. The adrenergic-fatty acid load in heart failure. J. Am. Coll. Cardiol., 54(18):1637–1646. [doi:10.1016/j.jacc.2009.07.024]PubMedCrossRefGoogle Scholar
  42. Opie, L.H., Commerford, P.J., Gersh, B.J., Pfeffer, M.A., 2006. Controversies in ventricular remodelling. Lancet, 367(9507):356–367. [doi:10.1016/s0140-6736(06)68074-4]PubMedCrossRefGoogle Scholar
  43. Paolisso, G., Gambardella, A., Galzerano, D., D’Amore, A., Rubino, P., Verza, M., Teasuro, P., Varricchio, M., D’Onofrio, F., 1994. Total-body and myocardial substrate oxidation in congestive heart failure. Metabolism, 43(2): 174–179 [doi:10.1016/0026-0495(94)90241-0]PubMedCrossRefGoogle Scholar
  44. Petersen, K.F., Shulman, G.I., 2006. Etiology of insulin resistance. Am. J. Med., 119(5S1):S10–S16. [doi:10.1016/ j.amjmed.2006.01.009]PubMedCrossRefGoogle Scholar
  45. Pitt, B., Remme, W., Zannad, F., Neaton, J., Martinez, F., Roniker, B., Bittman, R., Hurley, S., Kleiman, J., Gatlin, M., et al., 2003. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med., 348(14): 1309–1321. [doi:10.1056/NEJMoa030207]PubMedCrossRefGoogle Scholar
  46. Rajabi, M., Kassiotis, C., Razeghi, P., Taegtmeyer, H., 2007. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail. Rev., 12(3–4): 331–343. [doi:10.1007/s10741-007-9034-1]PubMedCrossRefGoogle Scholar
  47. Randle, P.J., Garland, P.B., Hales, C.N., Newsholme, E.A., 1963. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet, 281(7285):785–789.Google Scholar
  48. Razeghi, P., Young, M.E., Alcorn, J.L., Moravec, C.S., Frazier, O.H., Taegtmeyer, H., 2001. Metabolic gene expression in fetal and failing human heart. Circulation, 104(24): 2923–2931. [doi:10.1161/hc4901.100526]PubMedCrossRefGoogle Scholar
  49. Recchia, F.A., McConnell, P.I., Bernstein, R.D., Vogel, T.R., Xu, X., Hintze, T.H., 1998. Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ. Res., 83(10):969–979. [doi:10.1161/ 01.RES.83.10.969]PubMedCrossRefGoogle Scholar
  50. Riehle, C., Abel, E.D., 2012. PGC-1 proteins and heart failure. Trends Cardiovasc. Med., 22(4):98–105. [doi:10.1016/ j.tcm.2012.07.003]PubMedCrossRefGoogle Scholar
  51. Rosano, G.M., Fini, M., Caminiti, G., Barbaro, G., 2008. Cardiac metabolism in myocardial ischemia. Curr. Pharm. Des., 14(25):2551–2562. [doi:10.2174/138161 208786071317]PubMedCrossRefGoogle Scholar
  52. Rosca, M.G., Hoppel, C.L., 2010. Mitochondria in heart failure. Cardiovasc. Res., 88(1):40–50. [doi:10.1093/cvr/ cvq240]PubMedCrossRefGoogle Scholar
  53. Rowe, G.C., Jiang, A., Arany, Z., 2010. PGC-1 coactivators in cardiac development and disease. Circ. Res., 107(7): 825–838. [doi:10.1161/CIRCRESAHA.110.223818]PubMedCrossRefGoogle Scholar
  54. Sabbah, H.N., Sharov, V.G., Goldstein, S., 2000. Cell death, tissue hypoxia and the progression of heart failure. Heart Fail. Rev., 5(2):131–138. [doi:10.1023/A:1009880720032]PubMedCrossRefGoogle Scholar
  55. Sarma, S., Ardehali, H., Gheorghiade, M., 2012. Enhancing the metabolic substrate: PPAR-α agonists in heart failure. Heart Fail. Rev., 17(1):35–43. [doi:10.1007/s10741-010-9208-0]PubMedCrossRefGoogle Scholar
  56. Shah, A.M., Mann, D.L., 2011. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet, 378(9792):704–712. [doi:10. 1016/s0140-6736(11)60894-5]PubMedCrossRefGoogle Scholar
  57. Sihag, S., Cresci, S., Li, A.Y., Sucharov, C.C., Lehman, J.J., 2009. PGC-1α and ERRα target gene downregulation is a signature of the failing human heart. J. Mol. Cell Cardiol., 46(2):201–212. [doi:10.1016/j.yjmcc.2008.10.025]PubMedCrossRefGoogle Scholar
  58. Sisakian, H., Torgomyan, A., Barkhudaryan, A., 2007. The effect of trimetazidine on left ventricular systolic function and physical tolerance in patients with ischaemic cardiomyopathy. Acta Cardiol., 62(5):493–499.PubMedCrossRefGoogle Scholar
  59. Stanley, W.C., Recchia, F.A., Lopaschuk, G.D., 2005. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev., 85(3):1093–1129. [doi:10. 1152/physrev.00006.2004]PubMedCrossRefGoogle Scholar
  60. Taegtmeyer, H., Ballal, K., 2006. No low-fat diet for the failing heart? Circulation, 114(20):2092–2093. [doi:10.1161/CIRCULATIONAHA.106.659235]PubMedCrossRefGoogle Scholar
  61. Taylor, M., Wallhaus, T.R., Degrado, T.R., Russell, D.C., Stanko, P., Nickles, R.J., Stone, C.K., 2001. An evaluation of myocardial fatty acid and glucose uptake using pet with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure. J. Nucl. Med., 42(1):55–62.PubMedGoogle Scholar
  62. Tsutsui, H., Kinugawa, S., Matsushima, S., 2011. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol., 301(6):H2181–H2190. [doi:10.1152/ajpheart. 00554.2011]PubMedCrossRefGoogle Scholar
  63. Turer, A.T., Malloy, C.R., Newgard, C.B., Podgoreanu, M.V., 2010. Energetics and metabolism in the failing heart: important but poorly understood. Curr. Opin. Clin. Nutr. Metab. Care, 13(4):458–465. [doi:10.1097/MCO.0b013e 32833a55a5]PubMedCrossRefGoogle Scholar
  64. Tuunanen, H., Knuuti, J., 2011. Metabolic remodelling in human heart failure. Cardiovasc. Res., 90(2):251–257. [doi:10.1093/cvr/cvr052]PubMedCrossRefGoogle Scholar
  65. Tuunanen, H., Engblom, E., Naum, A., Scheinin, M., Nagren, K., Airaksinen, J., Nuutila, P., Iozzo, P., Ukkonen, H., Knuuti, J., 2006a. Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy: evidence of relationship with insulin resistance and left ventricular dysfunction. J. Card. Fail., 12(8):644–652. [doi:10.1016/j.cardfail.2006.06.005]PubMedCrossRefGoogle Scholar
  66. Tuunanen, H., Engblom, E., Naum, A., Nagren, K., Hesse, B., Airaksinen, K.E., Nuutila, P., Iozzo, P., Ukkonen, H., Opie, L.H., et al., 2006b. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation, 114(20):2130–2137. [doi:10. 1161/CIRCULATIONAHA.106.645184]PubMedCrossRefGoogle Scholar
  67. Vadvalkar, S.S., Baily, C.N., Matsuzaki, S., West, M., Tesiram, Y.A., Humphries, K.M., 2013. Metabolic inflexibility and protein lysine acetylation in heart mitochondria of a chronic model of type 1 diabetes. Biochem. J., 449(1): 253–261. [doi:10.1042/BJ20121038]PubMedCrossRefGoogle Scholar
  68. van Bilsen, M., van Nieuwenhoven, F.A., van der Vusse, G.J., 2009. Metabolic remodelling of the failing heart: beneficial or detrimental? Cardiovasc. Res., 81(3): 420–428. [doi:10.1093/cvr/cvn282]PubMedCrossRefGoogle Scholar
  69. Ventura-Clapier, R., Garnier, A., Veksler, V., 2004. Energy metabolism in heart failure. J. Physiol., 555(Pt1):1–13. [doi:10.1113/jphysiol.2003.055095]PubMedGoogle Scholar
  70. Ventura-Clapier, R., Garnier, A., Veksler, V., Joubert, F., 2011. Bioenergetics of the failing heart. Biochim. Biophys. Acta, 1813(7):1360–1372. [doi:10.1016/j.bbamcr.2010.09.006]PubMedCrossRefGoogle Scholar
  71. Wooley, J.A., 2008. Characteristics of thiamin and its relevance to the management of heart failure. Nutr. Clin. Pract., 23(5):487–493. [doi:10.1177/0884533608323430]PubMedCrossRefGoogle Scholar
  72. Yan, J., Young, M.E., Cui, L., Lopaschuk, G.D., Liao, R., Tian, R., 2009. Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation, 119(21):2818–2828. [doi:10.1161/CIRCULATIONAHA. 108.832915]PubMedCrossRefGoogle Scholar
  73. Zannad, F., McMurray, J.J., Krum, H., van Veldhuisen, D.J., Swedberg, K., Shi, H., Vincent, J., Pocock, S.J., Pitt, B., Group, E.H.S., 2011. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med., 364(1):11–21. [doi:10.1056/NEJMoa1009492]PubMedCrossRefGoogle Scholar
  74. Zhang, L., Lu, Y., Jiang, H., Zhang, L., Sun, A., Zou, Y., Ge, J., 2012. Additional use of trimetazidine in patients with chronic heart failure: a meta-analysis. J. Am. Coll. Cardiol., 59(10):913–922. [doi:10.1016/j.jacc.2011.11.027]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Cardiologythe First Affiliated Hospital of Kunming Medical UniversityKunmingChina

Personalised recommendations