Journal of Zhejiang University SCIENCE B

, Volume 14, Issue 5, pp 359–371 | Cite as

Long-term follow-up of children conceived through assisted reproductive technology

Review

Abstract

Children conceived via assisted reproductive technologies (ART) are nowadays a substantial proportion of the population. It is important to follow up these children and evaluate whether they have elevated health risks compared to naturally conceived (NC) children. In recent years there has been a lot of work in this field. This review will summarize what is known about the health of ART-conceived children, encompassing neonatal outcomes, birth defects, growth and gonadal developments, physical health, neurological and neurodevelopmental outcomes, psychosocial developments, risk for cancer, and epigenetic abnormalities. Most of the children conceived after ART are normal. However, there is increasing evidence that ART-conceived children are at higher risk of poor perinatal outcome, birth defects, and epigenetic disorders, and the mechanism(s) leading to these changes have not been elucidated. Continuous follow-up of children after ART is of great importance as they progress through adolescence into adulthood, and new ART techniques are constantly being introduced.

Key words

Assisted reproductive technologies (ART) Children Follow-up 

CLC number

R711.6 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, G.R., Salihu, H.M., 2005. Perinatal Outcomes of Singleton and Multiple Births in the United States 1995–1998. In: Blickstein, I., Keith, L.G. (Eds.), Multiple Pregnancy: Epidemiology, Gestation and Perinatal Outcome. Abingdon, UK, p.3–10.Google Scholar
  2. Basatemur, E., Shevlin, M., Sutcliffe, A., 2010. Growth of children conceived by IVF and ICSI up to 12 years of age. Reprod. Biomed. Online, 20(1):144–149. [doi:10.1016/j.rbmo.2009.10.006]PubMedCrossRefGoogle Scholar
  3. Belva, F., Henriet, S., Liebaers, I., van Steirteghem, A., Celestin-Westreich, S., Bonduelle, M., 2007. Medical outcome of 8-year-old singleton ICSI children (born ≥32 weeks’ gestation) and a spontaneously conceived comparison group. Hum. Reprod., 22(2):506–515. [doi:10.1093/humrep/del372]PubMedCrossRefGoogle Scholar
  4. Belva, F., Bonduelle, M., Painter, R.C., Schiettecatte, J., Devroey, P., de Schepper, J., 2010. Serum inhibin B concentrations in pubertal boys conceived by ICSI: first results. Hum. Reprod., 25(11):2811–2814. [doi:10.1093/humrep/deq249]PubMedCrossRefGoogle Scholar
  5. Belva, F., Bonduelle, M., Schiettecatte, J., Tournaye, H., Painter, R.C., Devroey, P., de Schepper, J., 2011. Salivary testosterone concentrations in pubertal ICSI boys compared with spontaneously conceived boys. Hum. Reprod., 26(2):438–441. [doi:10.1093/humrep/deq345]PubMedCrossRefGoogle Scholar
  6. Belva, F., Roelants, M., Painter, R., Bonduelle, M., Devroey, P., de Schepper, J., 2012a. Pubertal development in ICSI children. Hum. Reprod., 27(4):1156–1161. [doi:10.1093/humrep/des001]PubMedCrossRefGoogle Scholar
  7. Belva, F., Roelants, M., de Schepper, J., Roseboom, T.J., Bonduelle, M., Devroey, P., Painter, R.C., 2012b. Blood pressure in ICSI-conceived adolescents. Hum. Reprod., 27(10):3100–3108. [doi:10.1093/humrep/des259]PubMedCrossRefGoogle Scholar
  8. Bertelsmann, H., de Carvalho Gomes, H., Mund, M., Bauer, S., Matthias, K., 2008. The risk of malformation following assisted reproduction. Dtsch. Arztebl. Int., 105(1–2):11–17. [doi:10.3238/arztebl.2008.0011]PubMedGoogle Scholar
  9. Beydoun, H., Sicignano, N., Beydoun, M., Matson, D., Bocca, S., Stadtmauer, L., Oehninger, S., 2010. A cross-sectional evaluation of the first cohort of young adults conceived by in vitro fertilization in the United States. Fertil. Steril., 94(6):2043–2049. [doi:10.1016/j.fertnstert.2009.12.023]PubMedCrossRefGoogle Scholar
  10. Bonduelle, M., Bergh, C., Niklasson, A., Palermo, G.D., Wennerholm, U.B., 2004. Medical follow-up study of 5-year-old ICSI children. Reprod. Biomed. Online, 9(1):91–101. [doi:10.1016/S1472-6483(10)62116-5]PubMedCrossRefGoogle Scholar
  11. Bonduelle, M., Wennerholm, U.B., Loft, A., Tarlatzis, B.C., Peters, C., Henriet, S., Mau, C., Victorin-Cederquist, A., van Steirteghem, A., Balaska, A., et al., 2005. A multi-centre cohort study of the physical health of 5-year-old children conceived after intracytoplasmic sperm injection, in vitro fertilization and natural conception. Hum. Reprod., 20(2):413–419. [doi:10.1093/humrep/deh592]PubMedCrossRefGoogle Scholar
  12. Boulet, S.L., Schieve, L.A., Nannini, A., Ferre, C., Devine, O., Cohen, B., Zhang, Z., Wright, V., Macaluso, M., 2008. Perinatal outcomes of twin births conceived using assisted reproduction technology: a population-based study. Hum. Reprod., 23(8):1941–1948. [doi:10.1093/humrep/den169]PubMedCrossRefGoogle Scholar
  13. Bowdin, S., Allen, C., Kirby, G., Brueton, L., Afnan, M., Barratt, C., Kirkman-Brown, J., Harrison, R., Maher, E., Reardon, W., 2007. A survey of assisted reproductive technology births and imprinting disorders. Hum. Reprod., 22(12):3237–3240. [doi:10.1093/humrep/dem268]PubMedCrossRefGoogle Scholar
  14. Bower, C., Hansen, M., 2005. Assisted reproductive technologies and birth outcomes: overview of recent systematic reviews. Reprod. Fertil. Dev., 17(3):329–333. [doi:10.1071/RD04095]PubMedCrossRefGoogle Scholar
  15. Carson, C., Kurinczuk, J.J., Sacker, A., Kelly, Y., Klemetti, R., Redshaw, M., Quigley, M.A., 2010. Cognitive development following ART: effect of choice of comparison group, confounding and mediating factors. Hum. Reprod., 25(1):244–252. [doi:10.1093/humrep/dep344]PubMedCrossRefGoogle Scholar
  16. Ceelen, M., van Weissenbruch, M.M., Vermeiden, J.P., van Leeuwen, F.E., Delemarre-van de Waal, H.A., 2008a. Cardiometabolic differences in children born after in vitro fertilization: follow-up study. J. Clin. Endocrinol. Metab., 93(5):1682–1688. [doi:10.1210/jc.2007-2432]PubMedCrossRefGoogle Scholar
  17. Ceelen, M., van Weissenbruch, M.M., Vermeiden, J.P., van Leeuwen, F.E., Delemarre-van de Waal, H.A., 2008b. Pubertal development in children and adolescents born after IVF and spontaneous conception. Hum. Reprod., 23(12):2791–2798. [doi:10.1093/humrep/den309]PubMedCrossRefGoogle Scholar
  18. Ceelen, M., van Weissenbruch, M.M., Prein, J., Smit, J.J., Vermeiden, J.P., Spreeuwenberg, M., van Leeuwen, F.E., Delemarre-van de Waal, H.A., 2009. Growth during infancy and early childhood in relation to blood pressure and body fat measures at age 8-18 years of IVF children and spontaneously conceived controls born to subfertile parents. Hum. Reprod., 24(11):2788–2795. [doi:10.1093/humrep/dep273]PubMedCrossRefGoogle Scholar
  19. Choo, K.B., 2011. Epigenetics in disease and cancer. Malays. J. Pathol., 33(2):61–70.PubMedGoogle Scholar
  20. Davies, M.J., Moore, V.M., Willson, K.J., van Essen, P., Priest, K., Scott, H., Haan, E.A., Chan, A., 2012. Reproductive technologies and the risk of birth defects. N. Engl. J. Med., 366(19):1803–1813. [doi:10.1056/NEJMoa1008095]PubMedCrossRefGoogle Scholar
  21. de Mouzon, J., Goossens, V., Bhattacharya, S., Castilla, J.A., Ferraretti, A.P., Korsak, V., Kupka, M., Nygren, K.G., Nyboe Andersen, A., 2010. Assisted reproductive technology in Europe, 2006: results generated from European registers by ESHRE. Hum. Reprod., 25(8):1851–1862. [doi:10.1093/humrep/deq124]PubMedCrossRefGoogle Scholar
  22. de Schepper, J., Belva, F., Schiettecatte, J., Anckaert, E., Tournaye, H., Bonduelle, M., 2009. Testicular growth and tubular function in prepubertal boys conceived by intracytoplasmic sperm injection. Horm. Res., 71(6): 359–363. [doi:10.1159/000223421]PubMedCrossRefGoogle Scholar
  23. de Waal, E., Yamazaki, Y., Ingale, P., Bartolomei, M., Yanagimachi, R., McCarrey, J.R., 2012. Primary epimutations introduced during intracytoplasmic sperm injection (ICSI) are corrected by germline-specific epigenetic reprogramming. PNAS, 109(11):4163–4168. [doi:10.1073/pnas.1201990109]PubMedGoogle Scholar
  24. Doherty, A.S., Mann, M.R., Tremblay, K.D., Bartolomei, M.S., Schultz, R.M., 2000. Differential effects of cultureon imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod., 62(6):1526–1535. [doi:10.1095/biolreprod62.6.1526]PubMedCrossRefGoogle Scholar
  25. El-Chaar, D., Yang, Q., Gao, J., Bottomley, J., Leader, A., Wen, S.W., Walker, M., 2009. Risk of birth defects increased in pregnancies conceived by assisted human reproduction. Fertil. Steril., 92(5):1557–1561. [doi:10.1016/j.fertnstert.2008.08.080]PubMedCrossRefGoogle Scholar
  26. Fauser, B.C., Devroey, P., Macklon, N.S., 2005. Multiple birth resulting from ovarian stimulation for subfertility treatment. Lancet, 365(9473):1807–1816. [doi:10.1016/S0140-6736(05)66478-1]PubMedCrossRefGoogle Scholar
  27. Feinberg, A.P., 2007. Phenotypic plasticity and the epigenetics of human disease. Nature, 447(7143):433–440. [doi:10.1038/nature05919]PubMedCrossRefGoogle Scholar
  28. Ferraretti, A.P., Goossens, V., de Mouzon, J., Bhattacharya, S., Castilla, J.A., Korsak, V., Kupka, M., Nygren, K.G., Nyboe Andersen, A., 2012. Assisted reproductive technology in Europe, 2008: results generated from European registers by ESHRE. Hum. Reprod., 27(9):2571–2584. [doi:10.1093/humrep/des255]PubMedCrossRefGoogle Scholar
  29. Foix-L’Hélias, L., Aerts, I., Marchand, L., Lumbroso-le Rouic, L., Gauthier-Villars, M., Labrune, P., Bouyer, J., Doz, F., Kaminski, M., 2012. AAre children born after infertility treatment at increased risk of retinoblastoma? Hum. Reprod., 27(7):2186–2192. [doi:10.1093/humrep/des149]PubMedCrossRefGoogle Scholar
  30. Gerris, J., 2009. Single-embryo transfer versus multiple-embryo transfer. Reprod. Biomed. Online, 18(s2):s63–s70. [doi:10.1016/S1472-6483(10)60451-8]CrossRefGoogle Scholar
  31. Goel, A., Sreenivas, V., Bhatnagar, S., Lodha, R., Bhatla, N., 2009. Risk of birth defects increased in pregnancies conceived by assisted human reproduction. Fertil. Steril., 92(1):e7, author reply e8. [doi:10.1016/j.fertnstert.2009.02.089]PubMedCrossRefGoogle Scholar
  32. Gomes, M.V., Huber, J., Ferriani, R.A., Amaral Neto, A.M., Ramos, E.S., 2009. Abnormal methylation at the KvDMR1 imprinting control region in clinically normal children conceived by assisted reproductive technologies. Mol. Hum. Reprod., 15(8):471–477. [doi:10.1093/molehr/gap038]PubMedCrossRefGoogle Scholar
  33. Hansen, M., Bower, C., Milne, E., de Klerk, N., Kurinczuk, J.J., 2005. Assisted reproductive technologies and the risk of birth defects—a systematic review. Hum. Reprod., 20(2): 328–338. [doi:10.1093/humrep/deh593]PubMedCrossRefGoogle Scholar
  34. Hansen, M., Colvin, L., Petterson, B., Kurinczuk, J.J., de Klerk, N., Bower, C., 2009. Twins born following assisted reproductive technology: perinatal outcome and admission to hospital. Hum. Reprod., 24(9):2321–2331. [doi:10.1093/humrep/dep173]PubMedCrossRefGoogle Scholar
  35. Hayashi, M., Nakai, A., Satoh, S., Matsuda, Y., 2012. Adverse obstetric and perinatal outcomes of singleton pregnancies may be related to maternal factors associated with infertility rather than the type of assisted reproductive technology procedure used. Fertil. Steril., 98(4):922–928. [doi:10.1016/j.fertnstert.2012.05.049]PubMedCrossRefGoogle Scholar
  36. Henningsen, A.K., Pinborg, A., Lidegaard, ø., Vestergaard, C., Forman, J.L., Nyboe Andersen, A., 2011. Perinatal outcome of singleton siblings born after assisted reproductive technology and spontaneous conception: Danish national sibling-cohort study. Fertil. Steril., 95(3):959–963. [doi:10.1016/j.fertnstert.2010.07.1075]PubMedCrossRefGoogle Scholar
  37. Horsthemke, B., Ludwig, M., 2005. Assisted reproduction: the epigenetic perspective. Hum. Reprod. Update, 11(5): 473–482. [doi:10.1093/humupd/dmi022]PubMedCrossRefGoogle Scholar
  38. Hvidtjørn, D., Grove, J., Schendel, D.E., Vaeth, M., Ernst, E., Nielsen, L.F., Thorsen, P., 2006. Cerebral palsy among children born after in vitro fertilization: the role of preterm delivery-population-based, cohort study. Pediatrics, 118(2):475–482. [doi:10.1542/peds.2005-2585]PubMedCrossRefGoogle Scholar
  39. Hvidtjørn, D., Schieve, L., Schendel, D., Jacobsson, B., Svaerke, C., Thorsen, P., 2009. Cerebral palsy, autism spectrum disorders, and developmental delay in children born after assisted conception: a systematic review and meta-analysis. Arch. Pediatr. Adolesc. Med., 163(1): 72–83. [doi:10.1001/archpediatrics.2008.507]PubMedCrossRefGoogle Scholar
  40. Hvidtjørn, D., Grove, J., Schendel, D., Svaerke, C., Schieve, L.A., Uldall, P., Ernst, E., Jacobsson, B., Thorsen, P., 2010. Multiplicity and early gestational age contribute to an increased risk of cerebral palsy from assisted conception: a population-based cohort study. Hum. Reprod., 25(8):2115–2123. [doi:10.1093/humrep/deq070]PubMedCrossRefGoogle Scholar
  41. Hvidtjørn, D., Grove, J., Schendel, D., Schieve, L.A., Sværke, C., Ernst, E., Thorsen, P., 2011. Risk of autism spectrum disorders in children born after assisted conception: a population-based follow-up study. J. Epidemiol. Community Health, 65(6):497–502. [doi:10.1136/jech.2009.093823]PubMedCrossRefGoogle Scholar
  42. Källén, A.J., Finnström, O.O., Lindam, A.P., Nilsson, E.M., Nygren, K.G., Olausson, P.M., 2010. Cerebral palsy in children born after in vitro fertilization. Is the risk decreasing? Eur. J. Paediatr. Neurol., 14(6):526–530. [doi:10.1016/j.ejpn.2010.03.007]PubMedCrossRefGoogle Scholar
  43. Källén, B., Finnström, O., Nygren, K.G., Olausson, P.O., 2005. In vitro fertilization in Sweden: child morbidity including cancer risk. Fertil. Steril., 84(3):605–610. [doi:10.1016/j.fertnstert.2005.03.035]PubMedCrossRefGoogle Scholar
  44. Källén, B., Finnström, O., Lindam, A., Nilsson, E., Nygren, K.G., Olausson, P.O., 2010a. Cancer risk in children and young adults conceived by in vitro fertilization. Pediatrics, 126(2):270–276. [doi:10.1542/peds.2009-3225]PubMedCrossRefGoogle Scholar
  45. Källén, B., Finnström, O., Lindam, A., Nilsson, E., Nygren, K.G., Olausson, P.O., 2010b. Trends in delivery and neonatal outcome after in vitro fertilization in Sweden: data for 25 years. Hum. Reprod., 25(4):1026–1034. [doi:10.1093/humrep/deq003]PubMedCrossRefGoogle Scholar
  46. Kanat-Pektas, M., Kunt, C., Gungor, T., Mollamahmutoglu, L., 2008. Perinatal and first year outcomes of spontaneous versus assisted twins: a single center experience. Arch. Gynecol. Obstet., 278(2):143–147. [doi:10.1007/s00404-007-0545-8]PubMedCrossRefGoogle Scholar
  47. Katari, S., Turan, N., Bibikova, M., Erinle, O., Chalian, R., Foster, M., Gaughan, J.P., Coutifaris, C., Sapienza, C., 2009. DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum. Mol. Genet., 18(20):3769–3778. [doi:10.1093/hmg/ddp319]PubMedCrossRefGoogle Scholar
  48. Khosla, S., Dean, W., Brown, D., Reik, W., Feil, R., 2001. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted gene. Biol. Reprod., 64(3):918–926. [doi:10.1095/biolreprod64.3.918]PubMedCrossRefGoogle Scholar
  49. Kjellberg, A.T., Carlsson, P., Bergh, C., 2006. Randomized single versus double embryo transfer: obstetric and paediatric outcome and a cost-effectiveness analysis. Hum. Reprod., 21(1):210–216. [doi:10.1093/humrep/dei298]PubMedCrossRefGoogle Scholar
  50. Klemetti, R., Sevon, T., Gissler, M., Hemminki, E., 2006. Health of children born as a result of in vitro fertilization. Pediatrics, 118(5):1819–1827. [doi:10.1542/peds.2006-0735]PubMedCrossRefGoogle Scholar
  51. Knoester, M., Helmerhorst, F.M., van der Westerlaken, L.A., Walther, F.J., Veen, S., Leiden Artificial Reproductive Techniques Follow-up Project (L-art-FUP), 2007. Matched follow-up study of 5-8-year-old ICSI singletons: child behaviour, parenting stress and child (health-related) quality of life. Hum. Reprod., 22(12):3098–3107. [doi:10.1093/humrep/dem261]PubMedCrossRefGoogle Scholar
  52. Knoester, M., Helmerhorst, F.M., Vandenbroucke, J.P., van der Westerlaken, L.A., Walther, F.J., Veen, S., 2008. Perinatal outcome, health, growth, and medical care utilization of 5- to 8-year-old intracytoplasmic sperm injection singletons. Fertil. Steril., 89(5):1133–1146. [doi:10.1016/j.fertnstert.2007.04.049]PubMedCrossRefGoogle Scholar
  53. Koerner, M.V., Barlow, D.P., 2010. Genomic imprinting—an epigenetic gene-regulatory model. Curr. Opin. Genet. Dev., 20(2):164–170. [doi:10.1016/j.gde.2010.01.009]PubMedCrossRefGoogle Scholar
  54. Koivurova, S., Hartikainen, A.L., Sovio, U., Gissler, M., Hemminki, E., Jarvelin, M.R., 2003. Growth, psychomotor development and morbidity up to 3 years of age in children born after IVF. Hum. Reprod., 18(11):2328–2336. [doi:10.1093/humrep/deg445]PubMedCrossRefGoogle Scholar
  55. Koivurova, S., Hartikainen, A.L., Gissler, M., Hemminki, E., Jarvelin, M.R., 2007. Postneonatal hospitalization and health care costs among IVF children: a 7-year follow-up study. Hum. Reprod., 22(8):2136–2141. [doi:10.1093/humrep/dem150]PubMedCrossRefGoogle Scholar
  56. Laprise, S.L., 2009. Implications of epigenetics and genomic imprinting in assisted reproductive technologies. Mol. Reprod. Dev., 76(11):1006–1018. [doi:10.1002/mrd.21058]PubMedCrossRefGoogle Scholar
  57. Lee, S.H., Lee, M.Y., Chiang, T.L., Lee, M.S., Lee, M.C., 2010. Child growth from birth to 18 months old born after assisted reproductive technology—results of a national birth cohort study. Int. J. Nurs. Stud., 47(9):1159–1166. [doi:10.1016/j.ijnurstu.2010.02.006]PubMedCrossRefGoogle Scholar
  58. Leunens, L., Celestin-Westreich, S., Bonduelle, M., Liebaers, I., Ponjaert-Kristoffersen, I., 2006. Cognitive and motor development of 8-year-old children born after ICSI compared to spontaneously conceived children. Hum. Reprod., 21(11):2922–2929. [doi:10.1093/humrep/del266]PubMedCrossRefGoogle Scholar
  59. Leunens, L., Celestin-Westreich, S., Bonduelle, M., Liebaers, I., Ponjaert-Kristoffersen, I., 2008. Follow-up of cognitive and motor development of 10-year-old singleton children born after ICSI compared with spontaneously conceived children. Hum. Reprod., 23(1):105–111. [doi:10.1093/humrep/dem257]PubMedCrossRefGoogle Scholar
  60. Li, L., Wang, L., Le, F., Liu, X., Yu, P., Sheng, J., Huang, H., Jin, F., 2011a. Evaluation of DNA methylation status at differentially methylated regions in IVF-conceived newborn twins. Fertil. Steril., 95(6):1975–1979. [doi:10.1016/j.fertnstert.2011.01.173]PubMedCrossRefGoogle Scholar
  61. Li, L., Wang, L., Xu, X., Lou, H., Le, F., Li, L., Sheng, J., Huang, H., Jin, F., 2011b. Genome-wide DNA methylation patterns in IVF-conceived mice and their progeny: a putative model for ART-conceived humans. Reprod. Toxicol., 32(1):98–105. [doi:10.1016/j.reprotox.2011.05.016]PubMedCrossRefGoogle Scholar
  62. Li, L., Le, F., Wang, L.Y., Xu, X.R., Lou, H.Y., Zheng, Y.M., Sheng, J.Z., Huang, H.F., Jin, F., 2011c. Normal epigenetic inheritance in mice conceived by in vitro fertilization and embryo transfer. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 12(10):796–804. [doi:10.1631/jzus.B1000411]CrossRefGoogle Scholar
  63. Lidegaard, O., Pinborg, A., Andersen, A., 2005. Imprinting diseases and IVF: Danish national IVF cohort study. Hum. Reprod., 20(4):950–954. [doi:10.1093/humrep/deh714]PubMedCrossRefGoogle Scholar
  64. Lie, R.T., Lyngstadaas, A., ørstavik, K.H., Bakketeig, L.S., Jacobsen, G., Tanbo, T., 2005. Birth defects in children conceived by ICSI compared with children conceived by other IVF-methods: a meta-analysis. Int. J. Epidemiol., 34(3):696–701. [doi:10.1093/ije/dyh363]PubMedCrossRefGoogle Scholar
  65. Liu, Y.C., Blair, E.M., 2002. Predicted birthweight for singletons and twins. Twin Res., 5(6):529–537. [doi:10.1375/twin.5.6.529]PubMedGoogle Scholar
  66. Ludwig, A.K., Katalinic, A., Thyen, U., Sutcliffe, A.G., Diedrich, K., Ludwig, M., 2009. Physical health at 5.5 years of age of term-born singletons after intracytoplasmic sperm injection: results of a prospective, controlled, single-blinded study. Fertil. Steril., 91(1):115–124. [doi:10.1016/j.fertnstert.2007.11.037]PubMedCrossRefGoogle Scholar
  67. Ludwig, M., Katalinic, A., Gro, S., Sutcliffe, A., Varon, R., Horsthemke, B., 2005. Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J. Med. Genet., 42(4):289–291. [doi:10.1136/jmg.2004.026930]PubMedCrossRefGoogle Scholar
  68. Mains, L., Zimmerman, M., Blaine, J., Stegmann, B., Sparks, A., Ansley, T., van Voorhis, B., 2010. Achievement test performance in children conceived by IVF. Hum. Reprod., 25(10):2605–2611. [doi:10.1093/humrep/deq218]PubMedCrossRefGoogle Scholar
  69. Makhoul, I.R., Tamir, A., Bader, D., Rotschild, A., Weintraub, Z., Yurman, S., Reich, D., Bental, Y., Jammalieh, J., Smolkin, T., et al., 2009. In vitro fertilisation and use of ovulation enhancers may both influence childhood height in very low birthweight infants. Arch. Dis. Child. Fetal. Neonatal Ed., 94(5):F355–F359. [doi:10.1136/adc.2008.144402]PubMedCrossRefGoogle Scholar
  70. Marees, T., Dommering, C.J., Imhof, S.M., Kors, W.A., Ringens, P.J., van Leeuwen, F.E., Moll, A.C., 2009. Incidence of retinoblastoma in Dutch children conceived by IVF: an expanded study. Hum. Reprod., 24(12):3220–3224. [doi:10.1093/humrep/dep335]PubMedCrossRefGoogle Scholar
  71. Martin, J., Hamilton, B., Sutton, P., Ventura, S., Menacker, F., Kirmeyer, S., Mathews, T., 2009. Births: final data for 2006. Natl. Vital Stat. Rep., 57(7):1–104.Google Scholar
  72. Mau Kai, C., Main, K.M., Nyboe Andersen, A., Loft, A., Skakkebaek, N.E., Juul, A., 2007. Reduced serum testosterone levels in infant boys conceived by intracytoplasmic sperm injection. J. Clin. Endocrinol. Metab., 92(7):2598–2603. [doi:10.1210/jc.2007-0095]PubMedCrossRefGoogle Scholar
  73. McDonald, S., Murphy, K., Beyene, J., Ohlsson, A., 2005. Perinatal outcomes of in vitro fertilization twins: a systematic review and meta-analyses. Am. J. Obstet. Gynecol., 193(1):141–152. [doi:10.1016/j.ajog.2004.11.064]PubMedCrossRefGoogle Scholar
  74. McLaughlin, C.C., Baptiste, M.S., Schymura, M.J., Nasca, P.C., Zdeb, M.S., 2006. Maternal and infant birth characteristics and hepatoblastoma. Am. J. Epidemiol., 163(9): 818–828. [doi:10.1093/aje/kwj104]PubMedCrossRefGoogle Scholar
  75. Miles, H.L., Hofman, P.L., Peek, J., Harris, M., Wilson, D., Robinson, E.M., Gluckman, P.D., Cutfield, W.S., 2007. In vitro fertilization improves childhood growth and metabolism. J. Clin. Endocrinol. Metab., 92(9):3441–3445. [doi:10.1210/jc.2006-2465]PubMedCrossRefGoogle Scholar
  76. Moll, A.C., Imhof, S.M., Cruysberg, J.R., Schouten-van Meeteren, A.Y., Boers, M., van Leeuwen, F.E., 2003. Incidence of retinoblastoma in children born after in-vitro fertilisation. Lancet, 361(9354):309–310. [doi:10.1016/S0140-6736(03)12332-X]PubMedCrossRefGoogle Scholar
  77. Mozafari Kermani, R., Nedaeifard, L., Nateghi, M.R., Shahzadeh Fazeli, A., Ahmadi, E., Osia, M.A., Jafarzadehpour, E., Nouri, S., 2012. Congenital anomalies in infants conceived by assisted reproductive techniques. Arch. Iran. Med., 15(4):228–231.PubMedGoogle Scholar
  78. Nyboe Andersen, N., Goossens, V., Ferraretti, A.P., Bhattacharya, S., Felberbaum, R., de Mouzon, J., Nygren, K.G., 2008. Assisted reproductive technology in Europe, 2004: results generated from European registers by ESHRE. Hum. Reprod., 23(4):756–771. [doi:10.1093/humrep/den014]PubMedCrossRefGoogle Scholar
  79. Olivennes, F., 2005. Do children born after assisted reproductive technology have a higher incidence of birth defects? Fertil. Steril., 84(5):1325–1326, discussion 1327. [doi:10.1016/j.fertnstert.2005.05.044]PubMedCrossRefGoogle Scholar
  80. Papanikolaou, E.G., Kolibianakis, E.M., Tournaye, H., Venetis, C.A., Fatemi, H., Tarlatzis, B., Devroey, P., 2008. Live birth rates after transfer of equal number of blastocysts or cleavage-stage embryos in IVF. A systematic review and meta-analysis. Hum. Reprod., 23(1):91–99. [doi:10.1093/humrep/dem339]PubMedCrossRefGoogle Scholar
  81. Petridou, E.T., Sergentanis, T.N., Panagopoulou, P., Moschovi, M., Polychronopoulou, S., Baka, M., Pourtsidis, A., Athanassiadou, F., Kalmanti, M., Sidi, V., et al., 2012. In vitro fertilization and risk of childhood leukemia in Greece and Sweden. Pediatr. Blood Cancer, 58(6): 930–936. [doi:10.1002/pbc.23194]PubMedCrossRefGoogle Scholar
  82. Petronis, A., 2010. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature, 465(7299):721–727. [doi:10.1038/nature09230]PubMedCrossRefGoogle Scholar
  83. Pinborg, A., Loft, A., Schmidt, L., Nyboe Andersen, A., 2003. Morbidity in a Danish National cohort of 472 IVF/ICSI twins, 1132 non-IVF/ICSI twins and 634 IVF/ICSI singletons: health-related and social implications for the children and their families. Hum. Reprod., 18(6): 1234–1243. [doi:10.1093/humrep/deg257]PubMedCrossRefGoogle Scholar
  84. Place, I., Englert, Y., 2003. A prospective longitudinal study of the physical, psychomotor, and intellectual development of singleton children up to 5 years who were conceived by intracytoplasmic sperm injection compared with children conceived spontaneously and by in vitro fertilization. Fertil. Steril., 80(6):1388–1397. [doi:10.1016/j.fertnstert.2003.06.004]PubMedCrossRefGoogle Scholar
  85. Ponjaert-Kristoffersen, I., Bonduelle, M., Barnes, J., Nekkebroeck, J., Loft, A., Wennerholm, U.B., Tarlatzis, B.C., Peters, C., Hagberg, B.S., Berner, A., et al., 2005. International collaborative study of intracytoplasmic sperm injection-conceived, in vitro fertilization-conceived, and naturally conceived 5-year-old child outcomes: cognitive and motor assessments. Pediatrics, 115(3):e283–e289. [doi:10.1542/peds.2004-1445]PubMedCrossRefGoogle Scholar
  86. Puumala, S.E., Ross, J.A., Feusner, J.H., Tomlinson, G.E., Malogolowkin, M.H., Krailo, M.D., Spector, L.G., 2012a. Parental infertility, infertility treatment and hepatoblastoma: a report from the Children’s Oncology Group. Hum. Reprod., 27(6):1649–1656. [doi:10.1093/humrep/des109]PubMedCrossRefGoogle Scholar
  87. Puumala, S.E., Nelson, H.H., Ross, J.A., Nguyen, R.H., Damario, M.A., Spector, L.G., 2012b. Similar DNA methylation levels in specific imprinting control regions in children conceived with and without assisted reproductive technology: a cross-sectional study. BMC Pediatr., 12(1):33. [doi:10.1186/1471-2431-12-33]PubMedCrossRefGoogle Scholar
  88. Rancourt, R.C., Harris, H.R., Michels, K.B., 2012. Methylation levels at imprinting control regions are not altered with ovulation induction or in vitro fertilization in a birth cohort. Hum. Reprod., 27(7):2208–2216. [doi:10.1093/humrep/des151]PubMedCrossRefGoogle Scholar
  89. Rimm, A.A., Katayama, A.C., Diaz, M., Katayama, K.P., 2004. A meta-analysis of controlled studies comparing major malformation rates in IVF and ICSI infants with naturally conceived children. J. Assist. Reprod. Genet., 21(12): 437–443. [doi:10.1007/s10815-004-8760-8]PubMedCrossRefGoogle Scholar
  90. Rimm, A.A., Katayama, A.C., Katayama, K.P., 2011. A meta-analysis of the impact of IVF and ICSI on major malformations after adjusting for the effect of subfertility. J. Assist. Reprod. Genet., 28(8):699–705. [doi:10.1007/s10815-011-9583-z]PubMedCrossRefGoogle Scholar
  91. Romundstad, L.B., Romundstad, P.R., Sunde, A., von Düring, V., Skjaerven, R., Gunnell, D., Vatten, L.J., 2008. Effects of technology or maternal factors on perinatal outcome after assisted fertilisation: a population-based cohort study. Lancet, 372(9640):737–743. [doi:10.1016/S0140-6736(08)61041-7]PubMedCrossRefGoogle Scholar
  92. Saunders, N.R., Hellmann, J., Farine, D., 2011. Cerebral palsy and assisted conception. J. Obstet. Gynaecol. Can., 33(10):1038–1043.PubMedGoogle Scholar
  93. Sazonova, A., Källen, K., Thurin-Kjellberg, A., Wennerholm, U.B., Bergh, C., 2011. Obstetric outcome after in vitro fertilization with single or double embryo transfer. Hum. Reprod., 26(2):442–450. [doi:10.1093/humrep/deq325]PubMedCrossRefGoogle Scholar
  94. Scherrer, U., Rimoldi, S.F., Rexhaj, E., Stuber, T., Duplain, H., Garcin, S., de Marchi, S.F., Nicod, P., Germond, M., Allemann, Y., et al., 2012. Systemic and pulmonary vascular dysfunction in children conceived by assisted reproductive technologies. Circulation, 125(15):1890–1896. [doi:10.1161/CIRCULATIONAHA.111.071183]PubMedCrossRefGoogle Scholar
  95. Schieve, L.A., Meikle, S.F., Ferre, C., Peterson, H.B., Jeng, G., Wilcox, L.S., 2002. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N. Engl. J. Med., 346(10):731–737. [doi:10.1056/NEJMoa010806]PubMedCrossRefGoogle Scholar
  96. Schieve, L.A., Rasmussen, S.A., Reefhuis, J., 2005. Risk of birth defects among children conceived with assisted reproductive technology: providing an epidemiologic context to the data. Fertil. Steril., 84(5):1320–1324, discussion 1327. [doi:10.1016/j.fertnstert.2005.04.066]PubMedCrossRefGoogle Scholar
  97. Scott, K.A., Yamazaki, Y., Yamamoto, M., Lin, Y., Melhorn, S.J., Krause, E.G., Woods, S.C., Yanagimachi, R., Sakai, R.R., Tamashiro, K.L., 2010. Glucose parameters are altered in mouse offspring produced by assisted reproductive technologies and somatic cell nuclear transfer. Biol. Reprod., 83(2):220–227. [doi:10.1095/biolreprod.109.082826]PubMedCrossRefGoogle Scholar
  98. Strömberg, B., Dahlquist, G., Ericson, A., Finnström, O., Köster, M., Stjernqvist, K., 2002. Neurological sequelae in children born after in-vitro fertilisation: a population based study. Lancet, 359(9305):461–465. [doi:10.1016/S0140-6736(02)07674-2]PubMedCrossRefGoogle Scholar
  99. Sunderam, S., Chang, J., Flowers, L., Kulkarni, A., Sentelle, G., Jeng, G., Macaluso, M., 2009. Assisted reproductive technology surveillance—United States, 2006. Morb. Mortal Wkly Rep., 58:1–25.Google Scholar
  100. Sutcliffe, A.G., Saunders, K., McLachlan, R., Taylor, B., Edwards, P., Grudzinskas, G., Leiberman, B., Thornton, S., 2003. A retrospective case-control study of developmental and other outcomes in a cohort of Australian children conceived by intracytoplasmic sperm injection compared with a similar group in the United Kingdom. Fertil. Steril., 79(3):512–516. [doi:10.1016/S0015-0282 (02)04701-5]PubMedCrossRefGoogle Scholar
  101. Sutcliffe, A.G., Peters, C.J., Bowdin, S., Temple, K., Reardon, W., Wilson, L., Clayton-Smith, J., Brueton, L.A., Bannister, W., Maher, E.R., 2006. Assisted reproductive therapies and imprinting disorders—a preliminary British survey. Hum. Reprod., 21(4):1009–1011. [doi:10.1093/humrep/dei405]PubMedCrossRefGoogle Scholar
  102. Tararbit, K., Houyel, L., Bonnet, D., de Vigan, C., Lelong, N., Goffinet, F., Khoshnood, B., 2011. Risk of congenital heart defects associated with assisted reproductive technologies: a population-based evaluation. Eur. Heart J., 32(4):500–508. [doi:10.1093/eurheartj/ehq440]PubMedCrossRefGoogle Scholar
  103. Tierling, S., Souren, N.Y., Gries, J., Loporto, C., Groth, M., Lutsik, P., Neitzel, H., Utz-Billing, I., Gillessen-Kaesbach, G., Kentenich, H., et al., 2010. Assisted reproductive technologies do not enhance the variability of DNA methylation imprints in human. J. Med. Genet., 47(6):371–376. [doi:10.1136/jmg.2009.073189]PubMedCrossRefGoogle Scholar
  104. Tomizawa, S., Sasaki, H., 2012. Genomic imprinting and its relevance to congenital disease, infertility, molar pregnancy and induced pluripotent stem cell. J. Hum. Genet., 57(2): 84–91. [doi:10.1038/jhg.2011.151]PubMedCrossRefGoogle Scholar
  105. Tsai, C.C., Huang, F.J., Wang, L.J., Lin, Y.J., Kung, F.T., Hsieh, C.H., Lan, K.C., 2011. Clinical outcomes and development of children born after intracytoplasmic sperm injection (ICSI) using extracted testicular sperm or ejaculated extreme severe oligo-astheno-teratozoospermia sperm: a comparative study. Fertil. Steril., 96(3):567–571. [doi:10.1016/j.fertnstert.2011.06.080]PubMedCrossRefGoogle Scholar
  106. Turan, N., Katari, S., Gerson, L.F., Chalian, R., Foster, M.W., Gaughan, J.P., Coutifaris, C., Sapienza, C., 2010. Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genet., 6(7):e1001033. [doi:10.1371/journal.pgen.1001033]PubMedCrossRefGoogle Scholar
  107. Wagenaar, K., Ceelen, M., van Weissenbruch, M., Knol, D.L., Delemarre-van de Waal, H., Huisman, J., 2008. School functioning in 8 to 18-year-old children born after in vitro fertilization. Eur. J. Pediatr., 167(11):1289–1295. [doi:10.1007/s00431-008-0677-2]PubMedCrossRefGoogle Scholar
  108. Wagenaar, K., van Weissenbruch, M.M., Knol, D.L., Cohen-Kettenis, P.T., Delemarre-van de Waal, H.A., Huisman, J., 2009a. Behavior and socioemotional functioning in 9-18-year-old children born after in vitro fertilization. Fertil. Steril., 92(6):1907–1914. [doi:10.1016/j.fertnstert.2008.09.026]PubMedCrossRefGoogle Scholar
  109. Wagenaar, K., van Weissenbruch, M., Knol, D.L., 2009b. Information processing, attention and visual-motor function of adolescents born after in vitro fertilization compared with spontaneous conception. Hum. Reprod., 24(4):913–921. [doi:10.1093/humrep/den455]PubMedCrossRefGoogle Scholar
  110. Wagenaar, K., van Weissenbruch, M.M., van Leeuwen, F.E., Cohen-Kettenis, P.T., Delemarre-van de Waal, H.A., Schats, R., Huisman, J., 2011. Self-reported behavioral and socioemotional functioning of 11- to 18-year-old adolescents conceived by in vitro fertilization. Fertil. Steril., 95(2):611–616. [doi:10.1016/j.fertnstert.2010.04.076]PubMedCrossRefGoogle Scholar
  111. Wang, L.Y., Wang, N., Le, F., Li, L., Li, L.J., Liu, X.Z., Zheng, Y.M., Lou, H.Y., Xu, X.R., Zhu, X.M., Zhu, Y.M., Huang, H.F., Jin, F., 2013. Persistence and intergenerational transmission of differentially expressed genes in the testes of intracytoplasmic sperm injection conceived mice. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 14(5): 372–381. [doi:10.1631/jzus.B1200321]CrossRefGoogle Scholar
  112. Wang, N., Le, F., Liu, X., Zhan, Q., Wang, L., Sheng, J., Huang, H., Jin, F., 2012. Altered expressions and DNA methylation of imprinted genes in chromosome 7 in brain of mouse offspring conceived from in vitro maturation. Reprod. Toxicol., 34(3):420–428. [doi:10.1016/j.reprotox.2012.04.012]PubMedCrossRefGoogle Scholar
  113. Wen, J., Jiang, J., Ding, C., Dai, J., Liu, Y., Xia, Y., Liu, J., Hu, Z., 2012. Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: a meta-analysis. Fertil. Steril., 97(6):1331–1337. [doi:10.1016/j.fertnstert.2012.02.053]PubMedCrossRefGoogle Scholar
  114. Wikstrand, M.H., Niklasson, A., Strömland, K., Hellström, A., 2008. Abnormal vessel morphology in boys born after intracytoplasmic sperm injection. Acta Paediatr., 97(11): 1512–1517. [doi:10.1111/j.1651-2227.2008.00959.x]PubMedCrossRefGoogle Scholar
  115. Woldringh, G.H., Hendriks, J.C., van Klingeren, J., van Buuren, S., Kollée, L.A., Zielhuis, G.A., Kremer, J.A., 2011. Weight of in vitro fertilization and intracytoplasmic sperm injection singletons in early childhood. Fertil. Steril., 95(8):2775–2777. [doi:10.1016/j.fertnstert.2010.12.037]PubMedCrossRefGoogle Scholar
  116. Wu, C., Morris, J.R., 2001. Genes, genetics, and epigenetics: a correspondence. Science, 293(5532):1103–1105. [doi:10.1126/science.293.5532.1103]CrossRefGoogle Scholar
  117. Xing, L.F., Qu, F., Qian, Y.L., Zhang, F.H., Zhu, Y.M., Xu, X.F., 2011. The social adaptation of children born after ICSI compared with IVF-conceived children: a study from China. J. Obstet. Gynaecol., 31(8):751–753. [doi:10.3109/01443615.2011.606937]PubMedCrossRefGoogle Scholar
  118. Yan, J., Huang, G., Sun, Y., Zhao, X., Chen, S., Zou, S., Hao, C., Quan, S., Chen, Z.J., 2011. Birth defects after assisted reproductive technologies in China: analysis of 15405 offspring in seven centers (2004 to 2008). Fertil. Steril., 95(1):458–460. [doi:10.1016/j.fertnstert.2010.08.024]PubMedCrossRefGoogle Scholar
  119. Young, L.E., Sinclair, K.D., Wilmut, I., 1998. Large offspring syndrome in cattle and sheep. Rev. Reprod., 3(3):155–163. [doi:10.1530/ror.0.0030155]PubMedCrossRefGoogle Scholar
  120. Zachor, D.A., Ben Itzchak, E., 2011. Assisted reproductive technology and risk for autism spectrum disorder. Res. Dev. Disabil., 32(6):2950–2956. [doi:10.1016/j.ridd.2011.05.007]PubMedCrossRefGoogle Scholar
  121. Zaitseva, I., Zaitsev, S., Alenina, N., Bader, M., Krivokharchenko, A., 2007. Dynamics of DNA-demethylationin early mouse and rat embryos developed in vivo and in vitro. Mol. Reprod. Dev., 74(10):1255–1261. [doi:10.1002/mrd.20704]PubMedCrossRefGoogle Scholar
  122. Zhang, Y., Cui, Y., Zhou, Z., Sha, J., Li, Y., Liu, J., 2010. Altered global gene expressions of human placentae subjected to assisted reproductive technology treatments. Placenta, 31(4):251–258. [doi:10.1016/j.placenta.2010.01.005]PubMedCrossRefGoogle Scholar
  123. Zhu, J.L., Basso, O., Obel, C., Bille, C., Olsen, J., 2006. Infertility, infertility treatment, and congenital malformations: Danish national birth cohort. BMJ, 333(7570): 679. [doi:10.1136/bmj.38919.495718.AE]PubMedCrossRefGoogle Scholar
  124. Zhu, J.L., Hvidtjørn, D., Basso, O., Obel, C., Thorsen, P., Uldall, P., Olsen, J., 2010. Parental infertility and cerebral palsy in children. Hum. Reprod., 25(12):3142–3145. [doi:10.1093/humrep/deq206]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Key Laboratory of Reproductive Genetics (Zhejiang), Ministry of Education, and Centre of Reproductive Medicine, Women’s Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Center for Reproductive MedicineShaoxing Women and Children’s HospitalShaoxingChina

Personalised recommendations