Journal of Zhejiang University SCIENCE B

, Volume 14, Issue 12, pp 1132–1143 | Cite as

Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation

  • Anna Pick Kiong LingEmail author
  • Ying Chian Ung
  • Sobri Hussein
  • Abdul Rahim Harun
  • Atsushi Tanaka
  • Hase Yoshihiro



Heavy ion beam, which has emerged as a new mutagen in the mutation breeding of crops and ornamental plants, is expected to result in the induction of novel mutations. This study investigates the morphological and biochemical responses of Oryza sativa toward different doses of carbon ion beam irradiation.


In this study, the dry seeds of O. sativa were irradiated at 0, 20, 40, 60, 80, 100, and 120 Gy, followed by in-vitro germination under controlled conditions. Morphological and biochemical studies were conducted to investigate the morphological and physiological responses of O. sativa towards ion beam irradiation.


The study demonstrated that low doses (10 Gy) of ion beam have a stimulating effect on the height, root length, and fresh weight of the plantlets but not on the number of leaves. Meanwhile, doses higher than 10 Gy caused reductions in all the morphological parameters studied as compared to the control samples. The highest total soluble protein content [(2.11±0.47) mg/g FW] was observed in plantlets irradiated at 20 Gy. All irradiated plantlets were found to have 0.85% to 58.32% higher specific activity of peroxidase as compared to the control samples. The present study also revealed that low doses of ion beam (10 and 20 Gy) had negligible effect on the total chlorophyll content of O. sativa plantlets while 40 Gy had a stimulating effect on the chlorophyll content. Plantlets irradiated between 40 to 120 Gy were shown to be 0.38% to 9.98% higher in total soluble nitrogen content which, however, was not significantly different from the control samples.


Carbon ion beam irradiation administered at low to moderate doses of 10 to 40 Gy may induce O. sativa mutants with superior characteristics.

Key words

In vitro mutagenesis Ion beam irradiation Total chlorophyll content Total soluble protein content Mutation breeding 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, T., Matsuyama, T., Sekido, S., Yamaguchi, I., Yoshida, S., Kameya, T., 2002. Chlorophyll-deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation. J. Radiat. Res., 43:S157–S161. [doi:10.1269/jrr.43.S157]PubMedCrossRefGoogle Scholar
  2. Ahmad, Z., Abu Hassan, A., Idris, N.A., Basiran, N.M., Tanaka, A., Shikazono, N., Oono, Y., Hase, N., 2006. Effects of ion beam irradiation on Oncidium lanceanum Orchids. J. Nucl. Relat. Technol., 3(1):1–8.Google Scholar
  3. Bae, C.H., Abe, T., Matsuyama, T., Fukunishi, N., Nagata, N., Nakano, T., Kaneko, Y., Miyoshi, K., Matsushima, H., Yoshida, S., 2001. Regulation of chloroplast gene expression is affected in ali, a novel tobacco albino mutant. Ann. Bot., 88(4):545–553. [doi:10.1006/anbo.2001.1495]CrossRefGoogle Scholar
  4. Bajaj, Y.P.S., 1970. Effect of gamma-irradiation on growth, RNA, protein and nitrogen contents of bean callus cultures. Ann. Bot., 34(5):1089–1096.Google Scholar
  5. Balooch, A.W., Soomro, A.M., Naqvi, M.H., Bughio, H.R., Bughio, M.S., 2006. Sustainable enhancement of rice (Oryza sativa L.) production through the use of mutation breeding. Plant Mutat. Rep., 1(1):40–42.Google Scholar
  6. Bradford, M., 1976. A rapid and sensitive method for the quantification of the microgram quantities of proteins utilizing the principle of protein dye binding. Anal. Biochem., 72(1-2):248–254. [doi:10.1016/0003-2697(76)90527-3]PubMedCrossRefGoogle Scholar
  7. Byun, M.W., Jo, C., Lee, K.Y., Kim, K.S., 2002. Chlorophyll breakdown by gamma irradiation in a model system containing linoleic acid. J. Am. Oil Chem. Soc., 79(2): 145–150. [doi:10.1007/s11746-002-0449-y]CrossRefGoogle Scholar
  8. Chia, J.Y., 2008. Effects of Gamma-Irradiation on Morphological and Physiological Changes in Citrus sinensis. BSc Thesis, Universiti Tunku Abdul Rahman, Malaysia.Google Scholar
  9. Cho, H.Y., Lee, H.S., Pai, H.S., 2000. Expression pattern of diverse genes in response to gamma irradiation in Nicotiana tabacum. J. Plant Biol., 43(2):82–87. [doi:10.1007/BF03030499]CrossRefGoogle Scholar
  10. Corthals, G., Gygi, S., Aebersold, R., Patterson, S.D., 2000. Identification of proteins by mass spectrometry. Proteome Res., 2(1):286–290.Google Scholar
  11. Creanga, D., Mantale, A.M., Ecaterina, F., 2005. The Radiosensitivity of Photosynthetic Processes in Young Maize Plants. Available from [Accessed on Jan. 29, 2010]Google Scholar
  12. Croci, C.A., Arguello, J.A., Curvetto, N.R., Orioli, G.A., 1991. Changes in peroxidases associated with radiation-induced sprout inhibition in garlic (Allium sativum L.). Int. J. Radiat. Biol., 59(2):551–557. [doi:10.1080/09553009114550481]PubMedCrossRefGoogle Scholar
  13. Doerge, D.R., Divi, R.L., Churchwell, M.I., 1997. Identification of the colored guaicol oxidation product produced by peroxidases. Anal. Biochem., 250(1):10–17. [doi:10.1006/abio.1997.2191]PubMedCrossRefGoogle Scholar
  14. Dong, X.C., Li, W.J., Liu, Q.F., He, J.Y., Yu, L.X., Zhou, L.B., Qu, Y., Xie, H.M., 2008. The influence of carbon ion irradiation on sweet sorghum seeds. Nucl. Instrum. Methods Phys. Res. B, 266(1):123–126. [doi:10.1016/j.nimb.2007.10.025]CrossRefGoogle Scholar
  15. Fu, H.W., Li, Y.F., Shu, Q.Y., 2008. A revisit of mutation induction by gamma rays in rice (Oryza sativa L.): implications of microsatellite markers for quality control. Mol. Breed., 22(2):281–288. [doi:10.1007/s11032-008-9173-7]CrossRefGoogle Scholar
  16. Gaber, M.H., 2005. Effect of γ-irradiation on the molecular properties of bovine serum albumin. J. Biosci. Bioeng., 100(2):203–206. [doi:10.1263/jbb.100.203]PubMedCrossRefGoogle Scholar
  17. Gaikwad, J., Thomas, S., Kamble, S., Vidyasagar, P.B., Sarma, A., 1999. Effect of 7Li (45 MeV) ions on spinach leaves studied by thermoluminescence technique. Nucl. Instrum. Methods Phys. Res. B, 156(1–4):231–235. [doi:10.1016/S0168-583X(99)00286-4]CrossRefGoogle Scholar
  18. Gordon, S.A., Weber, R.P., 1953. Enzymatic radiosensitivity of auxinbiosynthesis. Radiat. Res., 21(1):23–31.Google Scholar
  19. Hameed, A., Mahmud Shah, T., Atta, B.M., Haq, M.A., Sayed, H., 2008. Gamma irradiation effects on seed germination and growth, protein content, peroxidase and protease activity, lipid peroxidation in Desi and Kabuli chickpea. Pak. J. Bot., 40(3):1033–1041.Google Scholar
  20. Hayashi, Y., Takehisa, H., Kazama, Y., Ichida, H., Ryuto, H., Fukunishi, N., Abe, T., 2007. Effects of ion beam irradiation on mutation induction in rice. Cyclotr. Their Appl., 18:237–239.Google Scholar
  21. Hayden, G.A., Friedberg, F., 1964. Effects of gamma radiation on ribonuclease. Radiat. Res., 22(1):130–135. [doi:10.2307/3571703]PubMedCrossRefGoogle Scholar
  22. Hewawasam, W.D.C.J., Bandara, D.C., Aberathne, W.M., 2004. New phenotypes of Crossandra infundibuliformis through in vitro culture and induced mutations. Trop. Agric. Res., 16(1):253–270.Google Scholar
  23. Humera, A., 2006. Biochemical and Molecular Markers of Somaclonal Variants and Induced Mutants of Potato (Solanum tuberosum L.). PhD Thesis, University of Punjab Lahore, Pakistan.Google Scholar
  24. International Rice Research Institute, 1985. Evaluation of the Physical Environment for Rice Cultivation. In: Soil Physics and Rice. International Rice Research Institute, Manila, p.32–36.Google Scholar
  25. Iqbal, J., Kutaček, M., Jiraček, V., 1974. Effects of acute gamma irradiation on the concentration of amino acids and protein-nitrogen in Zea mays. Radiat. Bot., 14(3): 165–172. [doi:10.1016/s0033-7560(74)80032-3]CrossRefGoogle Scholar
  26. Jones, H.E., West, H.M., Chamberlain, P.M., Parekh, N.R., Beresford, N.A., Crout, N.M.J., 2004. Effects of gamma irradiation on Holcus lanatus (Yorkshire fog grass) and associated soil microorganisms. J. Environ. Radioact., 74(1–3):57–71. [doi:10.1016/j.jenvrad.2004.01.027]PubMedCrossRefGoogle Scholar
  27. Kalimullah, M., Gaikwad, J.U., Thomas, S., Sarma, A., Vidyasagar, P.B., 2003. Assessment of 1H heavy ion irradiation induced effects in the development of rice (Oryza sativa L.) seedlings. Plant Sci., 165(3):447–454. [doi:10.1016/S0168-9452(03)00026-8]CrossRefGoogle Scholar
  28. Khanna, V.K., Maherchandani, N., 1985. Effects of gamma irradiation and seedling growth of “Kabuli” and “Desi” chickpea on the activity of alpha amylase. Indian J. Genet. Plant Breed., 28(2):3–10.Google Scholar
  29. Kim, J.H., Baek, M.H., Chung, B.Y., Wi, S.G., Kim, J.S., 2004. Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annum L.) seedlings from gamma-irradiated seeds. J. Plant Biol., 47(2): 314–321. [doi:10.1007/BF03030546]CrossRefGoogle Scholar
  30. Kirova, E., Nedeva, D., Nikolova, A., Ignatov, G., 2005. Changes in the biomass production and total soluble protein spectra of nitrate-fed and nitrogen-fixing soybeans subjected to gradual water stress. Plant Soil Environ., 51(5):237–242.Google Scholar
  31. Kokkinakis, D.M., Brooks, J.L., 1979. Tomato peroxidase: purification, characterization and catalytic properties. Plant Physiol., 63(1):93–99. [doi:10.1104/pp.63.1.93]PubMedCrossRefGoogle Scholar
  32. Li, K., Jiang, S., Yu, H.C., Zhao, J., Zhang, F.S., Carr, C., Zhang, J., Zhang, G., 2009. Analysis of charge and mass effects on peroxidase expressions and activities in Arabidopsis thaliana after low-energy ion irradiation. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 680(1-2): 64–69. [doi:10.1016/j.mrgentox.2009.09.009]CrossRefGoogle Scholar
  33. Lichtenthaler, H.K., 1987. Chlorophylls and carotenoids: pigments of the photosynthetic biomembranes. Methods Enzymol., 148(1):350–382. [doi:10.1016/0076-6879(87)48036-1]CrossRefGoogle Scholar
  34. Ling, A.P.K., Chia, J.Y., Hussein, S., Harun, A.R., 2008. Physiological responses of Citrus sinensis to gamma irradiation. World Appl. Sci. J., 5(1):12–19.Google Scholar
  35. Maity, J.P., Chakraborty, S., Sandeep, K., Subrata, P., Jean, J., Samal, A.C., Chakraborty, A., Santra, S.C., 2009. Effects of gamma irradiation on edible seed protein, amino acids and genomic DNA during sterilization. Food Chem., 114(4):1237–1244. [doi:10.1016/j.foodchem.2008.11.001]CrossRefGoogle Scholar
  36. Maltseva, A.V., Kuzin, M.A., 1975. Effect of gamma irradiation on some physiological properties of histones in Vicia faba and Trifolium pratense. Radiobiology, 14:480–485.Google Scholar
  37. Masuda, M., Agong, S.G., Tanaka, A., Shikazono, N., Hase, Y., 2009. Mutation spectrum of tomato induced by seed radiation with carbon and helium ion beams. Acta Hort., 637:257–262.Google Scholar
  38. Matsumura, A., Nomizu, T., Furutani, N., Hayashi, K., Minamiyama, Y., Hase, Y., 2010. Ray florets color and shape mutants induced by 12C5+ ion beam irradiation in chrysanthemum. Sci. Hort., 123(4):558–561. [doi:10.1016/j.scienta.2009.11.004]CrossRefGoogle Scholar
  39. Mohamad, O., Mohd Nazir, B., Alias, I., Azlan, S., Abdul Rahim, H., Abdullah, M.Z., Othman, O., 2006. Development of improved rice varieties through the use of induced mutations in Malaysia. Plant Mutat. Rep., 1(1): 27–33.Google Scholar
  40. Moussa, H.R., 2006. Role of gamma irradiation in regulation of NO3 level in rocket (Eruca vesicaria subsp. sativa) plants. Russ. J. Plant Physiol., 53(2):193–197. [doi:10.1134/S1021443706020075]CrossRefGoogle Scholar
  41. Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol.Plant., 15(3):473–497. [doi:10.1111/j.1399-3054.1962.tb08052.x]CrossRefGoogle Scholar
  42. Nassar, A.H., Hashim, M.F., Hassan, N.S., Abo-Zaid, H., 2004. Effect of gamma irradiation and phosphorus on growth and oil production of Chamomile (Chamomilla recutita L. Rauschert). Int. J. Agric. Biol., 6(5):776–780.Google Scholar
  43. Omar, M.S., Yousif, D.P., Al-Jibouri, A.J.M., Al-Rawi, M.S., Hameed, M.K., 1993. Effects of gamma rays and sodium chloride on growth and cellular constituents of sunflower (Helianthus annuus L.) callus cultures. J. Islamic Acad. Sci., 6(1):69–72.Google Scholar
  44. Preuss, S.B., Britt, A.B., 2003. A DNA-damage-induced cell cycle checkpoint in Arabidopsis. Genetics, 164:323–334.PubMedGoogle Scholar
  45. Qureshi, M.I., Qadir, S., Zolla, L., 2007. Proteomics-based dissection of stress-responsive pathways in plants. J. Plant Physiol., 164(10):1239–1260. [doi:10.1016/j.jplph.2007.01.013]PubMedCrossRefGoogle Scholar
  46. Rakwal, R., Kimura, S., Shibato, J., Nojima, K., Kim, Y.I., Nahm, B.H., 2007. Growth retardation and death of rice plants irradiated with carbon ion beams is preceded by very early dose- and time-dependent gene expression changes. Mol. Cells, 25(2):1–8.Google Scholar
  47. Rao, K.V.M., 2006. Introduction. In: Physiology and Molecular Biology of Stress Tolerance in Plants. Springer, the Netherlands, p.1.Google Scholar
  48. Rennie, D.A., Nelson, S.H., 1975. Low dose irradiation of vegetable seeds: the effects on N and P uptake. Can. J. Plant Sci., 55(3):761–769. [doi:10.4141/cjps75-119]CrossRefGoogle Scholar
  49. Saha, P., Raychaudhuri, S.S., Chakraborty, A., Sudarshan, M., 2010. PIXE analysis of trace elements in relation to chlorophyll concentration in Plantago ovata Forsk. Appl. Radiat. Isot., 68(3):444–449. [doi:10.1016/j.apradiso.2009.12.003]PubMedCrossRefGoogle Scholar
  50. Sharma, K.D., 1986. Induced Mutagenesis in Rice. In: Rice Genetics: Proceedings of the International Rice Genetics Symposium. International Rice Research Institute, Manila, p.680.Google Scholar
  51. Shikazono, N., Yokota, Y., Kitamura, S., Suzuki, C., Watanabe, H., Tano, S., Tanaka, A., 2003. Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions. Genetics, 163:1449–1455.PubMedGoogle Scholar
  52. Singh, B.B., 1971. Effect of gamma-irradiation on chlorophyll content of maize leaves. Radiat. Bot., 11(3):243–244. [doi:10.1016/S0033-7560(71)90435-2]CrossRefGoogle Scholar
  53. Skoog, F., 1935. The effect of gamma irradiation on auxin and plant growth. Physiology, 7(2):227–270.Google Scholar
  54. Strid, A., Chow, W.S., Anderson, J.M., 1990. Effects of supplementary gamma irradiation on photosynthesis in Pisumsativum. Biochemistry, 1020(1):260–268.Google Scholar
  55. Suprasanna, P., Sidha, M., Bapat, V.A., 2009. Integrated Approaches of Mutagenesis and in vitro Selection for Crop Improvement. In: Plant Tissue Culture and Molecular Markers: Their Roles in Improving Crop Productivity. IK International Publishing House, India, p.73–91.Google Scholar
  56. Tanaka, A., Kobayashi, Y., Hase, Y., Watanabe, H., 2002. Positional effect of cell inactivation on root gravitropism using heavy-ion microbeams. J. Exp. Bot., 53(369): 683–687. [doi:10.1093/jexbot/53.369.683]PubMedCrossRefGoogle Scholar
  57. Vazquez-Tello, A., Uozumi, T., Hidaka, M., Kobayashi, Y., Wanatabe, H., 2005. Effect of 12C+5 ion beam irradiation on cell viability and plant regeneration in callus, protoplasts and cell suspensions of Lavatera thuringiaca. Plant Cell Rep., 16(1–2):46–49. [doi:10.1007/s002990050173]Google Scholar
  58. Veitch, N.C., 2004. Structural determinants of plant peroxidase function. Phytochem. Rev., 3(1/2):3–18. [doi:10.1023/B:PHYT.0000047799.17604.94]CrossRefGoogle Scholar
  59. Verma, S., Lakra, N., Sarma, A., Misha, S.N., 2009. Effect of Li+ Heavy Ion on Hydrogen Peroxide Decomposing Enzymes in Leaves of Brassica juncea. MS Thesis, Maharshi Dayanand University, Rothak.Google Scholar
  60. Wang, K., 2006. Indica Rice (Oryza sativa, BR29 and IR64). In: Agrobacterium Protocols. Volume 1, Humana Press Inc., New Jersey, p.201.Google Scholar
  61. Widholm, J.M., 1989. Mutant isolation techniques with plant tissue culture. J. Tissue Cult. Methods, 12(4):151–156. [doi:10.1007/BF01404442]CrossRefGoogle Scholar
  62. Yamaguchi, H., Hase, Y., Tanaka, A., Shikazono, N., Degi, K., Shimizu, A., Morishita, T., 2009. Mutagenic effects of ion beam irradiation on rice. Breed. Sci., 59(2):169–177. [doi:10.1270/jsbbs.59.169]CrossRefGoogle Scholar
  63. Zaka, R., Vandecasteele, C.M., Misset, M.T., 2002. Effects of low chronic doses of ionizing radiation on antioxidant enzymes and G6PDH activities in Stipa capillata. J. Exp. Bot., 53(376):1979–1987. [doi:10.1093/jxb/erf041]PubMedCrossRefGoogle Scholar
  64. Zhang, L., Zhang, H., Zhang, X., Zhu, J., 2008. Assessment of biological changes in wheat seedlings induced by 12C6+-ion irradiation. Nucl. Sci. Tech., 19(3):138–141. [doi:10.1016/S1001-8042(08)60039-1]CrossRefGoogle Scholar
  65. Zhou, L., Li, W., Yu, L., Li, P., Li, Q., Ma, S., Dong, X., Zhou, G., Leloup, C., 2006. Linear energy transfer dependence of the effects of carbon ion beams on adventitious shoot regeneration from in vitro leaf explants of Saintpaulia ionahta. Int. J. Radiat. Biol., 82(7):473–481. [doi:10.1080/09553000600863080]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anna Pick Kiong Ling
    • 1
    Email author
  • Ying Chian Ung
    • 1
  • Sobri Hussein
    • 2
  • Abdul Rahim Harun
    • 2
  • Atsushi Tanaka
    • 3
  • Hase Yoshihiro
    • 3
  1. 1.Department of Science, Faculty of Engineering and ScienceUniversiti Tunku Abdul RahmanSetapak, Kuala LumpurMalaysia
  2. 2.Agrotechnology and Bioscience DivisionMalaysian Nuclear AgencyBangiKajang, Selangor, Malaysia
  3. 3.Radiation-Applied Biology Division, Quantum Beam Science DirectorateJapan Atomic Energy AgencyTakasaki, GunmaJapan

Personalised recommendations