Journal of Zhejiang University SCIENCE B

, Volume 13, Issue 9, pp 663–675 | Cite as

Molecular biomarkers of colorectal cancer: prognostic and predictive tools for clinical practice

  • Wei-qin Jiang
  • Fang-fang Fu
  • Yang-xia Li
  • Wei-bin Wang
  • Hao-hao Wang
  • Hai-ping Jiang
  • Li-song Teng


Colorectal cancer remains one of the most common types of cancer and leading causes of cancer death worldwide. Although we have made steady progress in chemotherapy and targeted therapy, evidence suggests that the majority of patients undergoing drug therapy experience severe, debilitating, and even lethal adverse drug events which considerably outweigh the benefits. The identification of suitable biomarkers will allow clinicians to deliver the most appropriate drugs to specific patients and spare them ineffective and expensive treatments. Prognostic and predictive biomarkers have been the subjects of many published papers, but few have been widely incorporated into clinical practice. Here, we want to review recent biomarker data related to colorectal cancer, which may have been ready for clinical use.

Key words

Colorectal cancer Biomarker Predictive value Prognostic value Chemotherapy Targeted therapy 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afzal, S., Jensen, S.A., Vainer, B., Vogel, U., Matsen, J.P., Sørensen, J.B., Andersen, P.K., Poulsen, H.E., 2009. MTHFR polymorphisms and 5-FU-based adjuvant chemotherapy in colorectal cancer. Ann. Oncol., 20(10): 1660–1666. [doi:10.1093/annonc/mdp046]PubMedCrossRefGoogle Scholar
  2. Akiyama, Y., Fujita, K., Nagashima, F., Yamamoto, W., Endo, H., Sunakawa, Y., Yamashita, K., Ishida, H., Mizuno, K., Araki, K., et al., 2008. Genetic testing for UGT1A1*28 and *6 in Japanese patients who receive irinotecan chemotherapy. Ann. Oncol., 19(12):2089–2090. [doi:10.1093/annonc/mdn645]PubMedCrossRefGoogle Scholar
  3. Andreetta, C., Puppin, C., Minisini, A., Valent, F., Pegolo, E., Damante, G., di Loreto, C., Pizzolitto, S., Pandolfi, M., Fasola, G., et al., 2009. Thymidine phosphorylase expression and benefit from capecitabine in patients with advanced breast cancer. Ann. Oncol., 20(2):265–271. [doi:10.1093/annonc/mdn592]PubMedCrossRefGoogle Scholar
  4. Best, L., Simmonds, P., Baughan, C., Buchanan, R., Davis, C., Fentiman, I., George, S., Gosney, M., Northover, J., Williams, C., 2000. Palliative chemotherapy for advanced or metastatic colorectal cancer. Cochrane Database Syst. Rev., (2):CD001545. [doi:10.1002/14651858.CD001545]Google Scholar
  5. Beutler, E., Gelbart, T., Demina, A., 1998. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? PNAS, 95(14):8170–8174.PubMedCrossRefGoogle Scholar
  6. Bokemeyer, C., Bondarenko, I., Makhson, A., Hartmann, J.T., Aparicio, J., de Braud, F., Donea, S., Ludwig, H., Schuch, G., Stroh, C., et al., 2009. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J. Clin. Oncol., 27(5):663–671. [doi:10.1200/JCO.2008.20.8397]PubMedCrossRefGoogle Scholar
  7. Boland, C.R., Thibodeau, S.N., Hamilton, S.R., Sidransky, D., Eshleman, J.R., Burt, R.W., Meltzer, S.J., Rodriguez-Bigas, M.A., Fodde, R., Ranzani, G.N., et al., 1998. A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res., 58(22):5248–5257.PubMedGoogle Scholar
  8. Cassidy, J., Tabernero, J., Twelves, C., Brunet, R., Butts, C., Conroy, T., Debraud, F., Figer, A., Grossmann, J., Sawada, N., et al., 2004. XELOX (capecitabine plus oxaliplatin): active first-line therapy for patients with metastatic colorectal cancer. J. Clin. Oncol., 22(11): 2084–2091. [doi:10.1200/JCO.2004.11.069]PubMedCrossRefGoogle Scholar
  9. Chibaudel, B., Tournigand, C., André, T., Larsen, A.K., de Gramont, A., 2010. Targeted therapies as adjuvant treatment for early-stage colorectal cancer: first impressions and clinical questions. Clin. Colorectal Cancer, 9(5):269–273. [doi:10.3816/CCC.2010.n.039]PubMedCrossRefGoogle Scholar
  10. Cohen, V., Panet-Raymond, V., Sabbaghian, N., Morin, I., Batist, G., Rozen, R., 2003. Methylenetetrahydrofolate reductase polymorphism in advanced colorectal cancer: a novel genomic predictor of clinical response to fluoropyrimidine-based chemotherapy. Clin. Cancer Res., 9(5):1611–1615.PubMedGoogle Scholar
  11. Colucci, G., Gebbia, V., Paoletti, G., Giuliani, F., Caruso, M., Gebbia, N., CartenÌ, G., Agostara, B., Pezzella, G., Manzione, L., et al., 2005. Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell’Italia Meridionale. J. Clin. Oncol., 23(22):4866–4875. [doi:10.1200/JCO.2005.07.113]PubMedCrossRefGoogle Scholar
  12. Coursier, S., Martelet, S., Guillermet, A., Emptoz, J., Villier, C., Bontemps, H., 2010. Severe toxicity following capecitabine administration because of dihydropyrimidine deshydrogenase (DPD) deficiency. Gastroenterol. Clin. Biol., 34(3):218–223. [doi:10.1016/j.gcb.2009.08.014]PubMedCrossRefGoogle Scholar
  13. de Roock, W., Piessevaux, H., de Schutter, J., Janssens, M., de Hertogh, G., Personeni, N., Biesmans, B., van Laethem, J.L., Peeters, M., Humblet, Y., et al., 2008. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann. Oncol., 19(3): 508–515. [doi:10.1093/annonc/mdm496]PubMedCrossRefGoogle Scholar
  14. de Roock, W., Jonker, D.J., di Nicolantonio, F., Sartore-Bianchi, A., Tu, D., Siena, S., Lamba, S., Arena, S., Frattini, M., Piessevaux, H., et al., 2010a. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA, 304(16):1812–1820. [doi:10.1001/jama.2010.1535]PubMedCrossRefGoogle Scholar
  15. de Roock, W., Claes, B., Bernasconi, D., de Schutter, J., Biesmans, B., Fountzilas, G., Kalogeras, K.T., Kotoula, V., Papamichael, D., Laurent-Puig, P., et al., 2010b. Effects of KRAS, BRAF, NRAS, and PIK3A, mutations on the efficacy of cetuximab plus chemotherapy in chemotehrapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol., 11(8):753–762. [doi:10.1016/S1470-2045(10)70130-3]PubMedCrossRefGoogle Scholar
  16. Diep, C.B., Thorstensen, L., Meling, G.I., Skovlund, E., Rognum, T.O., Lothe, R.A., 2003. Genetic tumor markers with prognostic impact in Dukes’ stages B and C colorectal cancer patients. J. Clin. Oncol., 21(5):820–829. [doi:10.1200/JCO.2003.05.190]PubMedCrossRefGoogle Scholar
  17. Eschrich, S., Yang, I., Bloom, G., Kwong, K.Y., Boulware, D., Cantor, A., Coppola, D., Kruhøffer, M., Aaltonen, L., Orntoft, T.F., et al., 2005. Molecular staging for survival prediction of colorectal cancer patients. J. Clin. Oncol., 23(15):3526–3535. [doi:10.1200/JCO.2005.00.695]PubMedCrossRefGoogle Scholar
  18. Formica, V., Palmirotta, R., del Monte, G., Savonarola, A., Ludovici, G., de Marchis, M.L., Grenga, I., Schirru, M., Guadagni, F., Roselli, M., 2011. Predictive value of VEGF gene polymorphisms for metastatic colorectal cancer patients receiving first-line treatment including fluorouracil, irinotecan, and bevacizumab. Int. J. Colorectal Dis., 26(2):143–151. [doi:10.1007/s00384-0101108-1]PubMedCrossRefGoogle Scholar
  19. French, A.J., Sargent, D.J., Burgart, L.J., Foster, N.R., Kabat, B.F., Goldberg, R., Shepherd, L., Windschitl, H.E., Thibodeau, S.N., 2008. Prognostic significance of defective mismatch repair and BRAF V600E in patients with colon cancer. Clin. Cancer Res., 14(11):3408–3415. [doi:10.1158/1078-0432.CCR-07-1489]PubMedCrossRefGoogle Scholar
  20. Fuchs, C.S., Marshall, J., Mitchell, E., Wierzbicki, R., Ganju, V., Jeffery, M., Schulz, J., Richards, D., Soufi-Mahjoubi, R., Wang, B., et al., 2007. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C study. J. Clin. Oncol., 25(30):4779–4786. [doi:10.1200/JCO.2007.11.3357]PubMedCrossRefGoogle Scholar
  21. Gao, J., Lu, M., Yu, J.W., Li, Y.Y., Shen, L., 2011. Thymidine Phosphorylase/β-tubulin III expressions predict the response in Chinese advanced gastric cancer patients receiving first-line capecitabine plus paclitaxel. BMC Cancer, 11:177. [doi:10.1186/1471-2407-11-177]PubMedCrossRefGoogle Scholar
  22. Garman, K.S., Acharya, C.R., Edelman, E., Grade, M., Gaedcke, J., Sud, S., Barry, W., Diehl, A.M., Provenzale, D., Ginsburg, G.S., et al., 2008. A genomic approach to colon cancer risk stratification yields biologic insights into therapeutic opportunities. PNAS, 105(49): 19432–19437. [doi:10.1073/pnas.0806674105]PubMedCrossRefGoogle Scholar
  23. Gill, S., Loprinzi, C.L., Sargent, D.J., Thomé, S.D., Alberts, S.R., Haller, D.G., Benedetti, J., Francini, G., Shepherd, L.E., Francois, S.J., et al., 2004. Pooled analysis of fluorouracil-based adjuvant therapy for stage II and III colon cancer: who benefits and by how much? J. Clin. Oncol., 22(10):1797–1806. [doi:10.1200/JCO.2004.09.059]PubMedCrossRefGoogle Scholar
  24. Gray, R., Barnwell, J., McConkey, C., Hills, R.K., Williams, N.S., Kerr, D.J., 2007. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet, 370(9604):2020–2029. [doi:10.1016/S0140-6736(07)61866-2]PubMedCrossRefGoogle Scholar
  25. Gray, R.G., Quirke, P., Handley, K., Lopatin, M., Magill, L., Baehner, F.L., Beaumont, C., Clark-Langone, K.M., Yoshizawa, C.N., Lee, M., et al., 2011. Validation study of a quantitative multigene reverse transcriptase-polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer. J. Clin. Oncol., 29(35):4611–4619. [doi:10.1200/JCO.2010.32.8732]PubMedCrossRefGoogle Scholar
  26. Hoskins, J.M., Goldberg, R.M., Qu, P., Ibrahim, J.G., McLeod, H.L., 2007. UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J. Natl. Cancer Inst., 99(17):1290–1295. [doi:10.1093/jnci/djm115]PubMedCrossRefGoogle Scholar
  27. Hotta, T., Taniguchi, K., Kobayashi, Y., Johata, K., Sahara, M., Naka, T., Watanabe, T., Ochiai, M., Tanimura, H., Tsubota, Y.T., 2004. Increased expression of thymidine phosphorylase in tumor tissue in proportion to TP-expression in primary normal tissue. Oncol. Rep., 12(3):539–541.PubMedGoogle Scholar
  28. Huang, M.Y., Huang, M.L., Chen, M.J., Lu, C.Y., Chen, C.F., Tsai, P.C., Chuang, S.C., Hou, M.F., Lin, S.R., Wang, J.Y., 2011. Multiple genetic polymorphisms in the prediction of clinical outcome of metastatic colorectal cancer patients treated with first-line FOLFOX-4 chemotherapy. Pharmacogenet. Genomics, 21(1):18–25. [doi:10.1097/FPC.0b013e3283415124]PubMedCrossRefGoogle Scholar
  29. Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., et al., 2004. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med., 350:2335–2342. [doi:10.1056/NEJMoa032691]PubMedCrossRefGoogle Scholar
  30. Hurwitz, H.I., Yi, J., Ince, W., Novotny, W.F., Rosen, O., 2009. The clinical benefit of bevacizumab in metastatic colorectal cancer is independent of KRAS mutation status: analysis of a phase III study of bevacizumab with chemotherapy in previously untreated metastatic colorectal cancer. Oncologist, 14(1):22–28. [doi:10.1634/theon cologist.2008-0213]PubMedCrossRefGoogle Scholar
  31. Iacopetta, B., Russo, A., Bazan, V., Dardanoni, G., Gebbia, N., Soussi, T., Kerr, D., Elsaleh, H., Soong, R., Kandioler, D., et al., 2006. Functional categories of TP53 mutation in colorectal cancer: results of an International Collaborative Study. Ann. Oncol., 17(5):842–847. [doi:10.1093/annonc/mdl035]PubMedCrossRefGoogle Scholar
  32. Inada, M., Sato, M., Morita, S., Kitagawa, K., Kawada, K., Mitsuma, A., Sawaki, M., Fujita, K., Ando, Y., 2010. Associations between oxaliplatin-induced peripheral neuropathy and polymorphisms of the ERCC1 and GSTP1 genes. Int. J. Clin. Pharmacol. Ther., 48(11): 729–734. [doi:10.5414/CPP48729]PubMedGoogle Scholar
  33. Innocenti, F., Undevia, S.D., Iyer, L., Chen, P.X., Das, S., Kocherginsky, M., Karrison, T., Janisch, L., Ramírez, J., Rudin, C.M., et al., 2004. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J. Clin. Oncol., 22(8): 1382–1388. [doi:10.1200/JCO.2004.07.173]PubMedCrossRefGoogle Scholar
  34. Innocenti, F., Kroetz, D.L., Schuetz, E., Dolan, M.E., Ramírez, J., Relling, M., Chen, P., Das, S., Rosner, G.L., Ratain, M.J., 2009. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J. Clin. Oncol., 27(16):2604–2614. [doi:10.1200/JCO.2008.20.6300]PubMedCrossRefGoogle Scholar
  35. Jada, S.R., Lim, R., Wong, C.I., Shu, X., Lee, S.C., Zhou, Q., Goh, B.C., Chowbay, B., 2007. Role of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A polymorphisms in irinotecan induced neutropenia in Asian cancer patients. Cancer Sci., 98(9):1461–1467. [doi:10.1111/j.1349-7006.2007.00541.x]PubMedCrossRefGoogle Scholar
  36. Jakobsen, A., Nielsen, J.N., Gyldenkerne, N., Lindeberg, J., 2005. Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphism in normal tissue as predictors of fluorouracil sensitivity. J. Clin. Oncol., 23(7):1365–1369. [doi:10.1200/JCO.2005.06.219]PubMedCrossRefGoogle Scholar
  37. Jorissen, R.N., Gibbs, P., Christie, M., Prakash, S., Lipton, L., Desai, J., Kerr, D., Aaltonen, L.A., Arango, D., Kruhøffer, M., et al., 2009. Metastasis-associated gene expression changes predict poor outcomes in patients with Dukes stage B and C colorectal cancer. Clin. Cancer Res., 15(24):7642–7651. [doi:10.1158/1078-0432.CCR-09-1431]PubMedCrossRefGoogle Scholar
  38. Kalow, W., Tang, B., Endrenyi, L., 1998. Hypothesis: comparisons of inter- and intra-individual variations can substitute for twin studies in drug research. Pharmacogenetics, 8(4):283–289.PubMedCrossRefGoogle Scholar
  39. Kaniwa, N., Kurose, K., Jinno, H., Tanaka-Kagawa, T., Saito, Y., Saeki, M., Sawada, J., Tohkin, M., Hasegawa, R., 2005. Racial variability in haplotype frequencies of UGT1A1 and glucuronidation activity of a novel single nucleotide polymorphism 686C>T (P229L) found in an African-American. Drug Metab. Dispos., 33(3):458–465. [doi:10.1124/dmd.104.001800]PubMedCrossRefGoogle Scholar
  40. Karapetis, C.S., Khambata-Ford, S., Jonker, D.J., O’Callaghan, C.J., Tu, D., Tebbutt, N.C., Simes, R.J., Chalchal, H., Shapiro, J.D., Robitaille, S., et al., 2008. KRAS mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med., 359(17):1757–1765. [doi:10.1056/NEJMoa0804385]PubMedCrossRefGoogle Scholar
  41. Kawakami, K., Omura, K., Kanehira, E., Watanabe, Y., 1999. Polymorphic tandem repeats in the thymidylate synthase gene is associated with its protein expression in human gastrointestinal cancers. Anticancer Res., 19(4B): 3249–3252.PubMedGoogle Scholar
  42. Khambata-Ford, S., Garrett, C.R., Meropol, N.J., Basik, M., Harbison, C.T., Wu, S., Wong, T.W., Huang, X., Takimoto, C.H., Godwin, A.K., et al., 2007. Expression of epiregulin and amphiregulin and KRAS mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J. Clin. Oncol., 25(22): 3230–3237. [doi:10.1200/JCO.2006.10.5437]PubMedCrossRefGoogle Scholar
  43. Köhne, C.H., Lenz, H.J., 2009. Chemotherapy with targeted agents for the treatment of metastatic colorectal cancer. Oncologist, 14(5):478–488. [doi:10.1634/theoncologist.2008-0202]PubMedCrossRefGoogle Scholar
  44. Lamas, M.J., Duran, G., Balboa, E., Bernardez, B., Touris, M., Vidal, Y., Gallardo, E., Lopez, R., Carracedo, A., Barros, F., 2011. Use of a comprehensive panel of biomarkers to predict response to a fluorouracil-oxaliplatin regimen in patients with metastatic colorectal cancer. Pharmacogenomics, 12(3):433–442. [doi:10.2217/pgs.10.196]PubMedCrossRefGoogle Scholar
  45. Lecomte, T., Landi, B., Beaune, P., Laurent-Puig, P., Loriot, M.A., 2006. Glutathione S-transferase P1 polymorphism (Ile105Val) predicts cumulative neuropathy in patients receiving oxaliplatin-based chemotherapy. Clin. Cancer Res., 12(10):3050–3056. [doi:10.1158/1078-0432.CCR05-2076]PubMedCrossRefGoogle Scholar
  46. Lièvre, A., Bachet, J.B., le Corre, D., Boige, V., Landi, B., Emile, J.F., Côté, J.F., Tomasic, G., Penna, C., Ducreux, M., et al., 2006. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res., 66(8):3992–3995. [doi:10.1158/0008-5472.CAN-06-0191]PubMedCrossRefGoogle Scholar
  47. Marsh, S., McLeod, H., 2001. Thymidylate synthase pharmacogenetics in colorectal cancer. Clin. Colorectal. Cancer, 1(3):175–178. [doi:10.3816/CCC.2001.n.018]PubMedCrossRefGoogle Scholar
  48. Mattison, L.K., Soong, R., Diasio, R.B., 2002. Implications of dihydropyrimidine dehydrogenase on 5-fluorouracil pharmacogenetics and pharmacogenomics. Pharmacogenomics, 3(4):485–492. [doi:10.1517/14622416.3.4.485]PubMedCrossRefGoogle Scholar
  49. Mayer, A., Takimoto, M., Fritz, E., Schellander, G., Kofler, K., Ludwig, H., 1993. The prognostic significance of proliferating cell nuclear antigen, epidermal growth factor receptor, and mdr gene expression in colorectal cancer. Cancer, 71(8):2454–2460.PubMedCrossRefGoogle Scholar
  50. Mcleod, H.L., Sargent, D.J., Marsh, S., Green, E.M., King, C.R., Fuchs, C.S., Ramanathan, R.K., Williamson, S.K., Findlay, B.P., Thibodeau, S.N., et al., 2010. Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: results from North American Gastrointestinal Intergroup Trial N9741. J. Clin. Oncol., 28(20):3227–3233. [doi:10.1200/JCO.2009.21.7943]PubMedCrossRefGoogle Scholar
  51. Milano, G., Etienne, M.C., Pierrefite, V., Barberi-Heyob, M., Deporte-Fety, R., Renée, N., 1999. Dihydropyrimidine dehydrogenase deficiency and fluorouracil-related toxicity. Br. J. Cancer, 79:627–630. [doi:10.1038/sj.bjc.6690098]PubMedCrossRefGoogle Scholar
  52. Moreno, V., Gemignani, F., Landi, S., Gioia-Patricola, L., Chabrier, A., Blanco, I., González, S., Guino, E., Capellà, G., Canzian, F., 2006. Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. Clin. Cancer Res., 12(7Pt1): 2101–2108. [doi:10.1158/1078-0432.CCR-05-1363]PubMedCrossRefGoogle Scholar
  53. Moroni, M., Veronese, S., Benvenuti, S., Marrapese, G., Sartore-Bianchi, A., di Nicolantonio, F., Gambacorta, M., Siena, S., Bardelli, A., 2005. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol., 6(5):279–286. [doi:10.1016/S1470-2045(05)70102-9]PubMedCrossRefGoogle Scholar
  54. Moroni, M., Sartore-Bianchi, A., Veronese, S., Siena, S., 2008. EGFR FISH in colorectal cancer: what is the current reality? Lancet Oncol., 9(5):402–403. [doi:10.1016/S1470-2045(08)70109-8]PubMedCrossRefGoogle Scholar
  55. O’Connell, M.J., Lavery, I., Yothers, G., Paik, S., Clark-Langone, K.M., Lopatin, M., Watson, D., Baehner, F.L., Shak, S., Baker, J., et al., 2010. Relationship between tumor gene expression and recurrence in four independent studies of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. J. Clin. Oncol., 28: 3937–3944. [doi:10.1200/JCO.2010.28.9538]PubMedCrossRefGoogle Scholar
  56. Palomaki, G.E., Bradley, L.A., Douglas, M.P., Kolor, K., Dotson, W.D., 2009. Can UGT1A1 genotyping reduce morbidity and mortality in patients with metastatic colorectal cancer treated with irinotecan? An evidence-based review. Genet. Med., 11(1):21–34. [doi:10.1097/GIM.0b013e31818efd77]PubMedCrossRefGoogle Scholar
  57. Petrioli, R., Bargagli, G., Lazzi, S., Pascucci, A., Francini, E., Bellan, C., Conca, R., Martellucci, I., Fiaschi, A.I., Lorenzi, B., et al., 2010. Thymidine phosphorylase expression in metastatic sites is predictive for response in patients with colorectal cancer treated with continuous oral capecitabine and biweekly oxaliplatin. Anticancer Drugs, 21(3):313–319. [doi:10.1097/CAD.0b013e328334d88a]PubMedCrossRefGoogle Scholar
  58. Popat, S., Hubner, R., Houlston, R.S., 2005. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol., 23(3):609–618. [doi:10.1200/JCO.2005.01.086]PubMedCrossRefGoogle Scholar
  59. Raida, M., Schwabe, W., Hausler, P., van Kuilenburg, A.B., van Gennip, A.H., Behnke, D., Höffken, K., 2001. Prevalence of a common point mutation in the dihydropyrimidine dehydrogenase (DPD) gene within the 5′-splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)-related toxicity compared with controls. Clin. Cancer Res., 7(9):2832–2839.PubMedGoogle Scholar
  60. Rajagopalan, H., Bardelli, A., Lengauer, C., Kinzler, K.W., Vogelstein, B., Velculescu, V.E., 2002. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature, 418(6901):934. [doi:10.1038/418934a]PubMedCrossRefGoogle Scholar
  61. Ribic, C.M., Sargent, D.J., Moore, M.J., Thibodeau, S.N., French, A.J., Goldberg, R.M., Hamilton, S.R., Laurent-Puig, P., Gryfe, R., Shepherd, L.E., et al., 2003. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med., 349(3):247–257. [doi:10.1056/NEJMoa022289]PubMedCrossRefGoogle Scholar
  62. Roth, A.D., Tejpar, S., Delorenzi, M., Yan, P., Fiocca, R., Klingbiel, D., Dietrich, D., Biesmans, B., Bodoky, G., Barone, C., et al., 2010. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J. Clin. Oncol., 28(3):466–474. [doi:10.1200/JCO.2009.23.3452]PubMedCrossRefGoogle Scholar
  63. Sartore-Bianchi, A., Moroni, M., Veronese, S., Carnaghi, C., Bajetta, E., Luppi, G., Sobrero, A., Barone, C., Cascinu, S., Colucci, G., et al., 2007. Epidermal growth factor receptor gene copy number and clinical outcome of metastatic colorectal cancer treated with panitumumab. J. Clin. Oncol., 25(22):3238–3245. [doi:10.1200/JCO.2007.11.5956]PubMedCrossRefGoogle Scholar
  64. Scaltriti, M., Baselga, J., 2006. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin. Cancer Res., 12(18):5268–5272. [doi:10.1158/1078-0432.CCR-05-1554]PubMedCrossRefGoogle Scholar
  65. Scartozzi, M., Galizia, E., Chiorrini, S., Giampieri, R., Berardi, R., Pierantoni, C., Cascinu, S., 2009. Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line bevacizumab. Ann. Oncol., 20(2):227–230. [doi:10.1093/annonc/mdn637]PubMedCrossRefGoogle Scholar
  66. Schneider, B.P., Wang, M., Radovich, M., Sledge, G.W., Badve, S., Thor, A., Flockhart, D.A., Hancock, B., Davidson, N., Gralow, J., et al., 2008. Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J. Clin. Oncol., 26(28):4672–4678. [doi:10.1200/JCO.2008.16.1612]PubMedCrossRefGoogle Scholar
  67. Schultheis, A.M., Lurje, G., Rhodes, K.E., Zhang, W., Yang, D., Garcia, A.A., Morgan, R., Gandara, D., Scudder, S., Oza, A., et al., 2008. Polymorphisms and clinical outcome in recurrent ovarian cancer treated with cyclophosphamide and bevacizumab. Clin. Cancer Res., 14(22):7554–7563. [doi:10.1158/1078-0432.CCR-08-0351]PubMedCrossRefGoogle Scholar
  68. Seck, K., Riemer, S., Kates, R., Ullrich, T., Lutz, V., Harbeck, N., Schmitt, M., Kiechle, M., Diasio, R., Gross, E., 2005. Analysis of the DPYD gene implicated in 5-fluorouracil catabolism in a cohort of Caucasian individuals. Clin. Cancer Res., 11(16):5886–5892. [doi:10.1158/1078-0432.CCR-04-1784]PubMedCrossRefGoogle Scholar
  69. Segaert, S., Chiritescu, G., Lemmens, L., Dumon, K., van Cutsem, E., Tejpar, S., 2009. Skin toxicities of targeted therapies. Eur. J. Cancer, 45(Suppl. 1):295–308. [doi:10.1016/S0959-8049(09)70044-9]PubMedCrossRefGoogle Scholar
  70. Siegel, R., Ward, E., Brawley, O., Jemal, A., 2011. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin., 61(4):212–236. [doi:10.3322/caac.20121]PubMedCrossRefGoogle Scholar
  71. Siena, S., Sartore-Bianchi, A., di Nicolantonio, F., Balfour, J., Bardelli, A., 2009. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J. Natl. Cancer Inst., 101(19):1308–1324. [doi:10.1093/jnci/djp280]PubMedCrossRefGoogle Scholar
  72. Sinicrope, F.A., Foster, N.R., Thibodeau, S.N., Marsoni, S., Monges, G., Labianca, R., Yothers, G., Allegra, C., Moore, M.J., Gallinger, S., et al., 2011. DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J. Natl. Cancer Inst., 103(11):863–875. [doi:10.1093/jnci/djr153]PubMedCrossRefGoogle Scholar
  73. Spano, J.P., Fagard, R., Soria, J.C., Rixe, O., Khayat, D., Milano, G., 2005. Epidermal growth factor receptor signaling in colorectal cancer: preclinical data and therapeutic perspectives. Ann. Oncol., 16(2):189–194. [doi:10.1093/annonc/mdi057]PubMedCrossRefGoogle Scholar
  74. Stockmann, C., Doedens, A., Weidemann, A., Zhang, N., Takeda, N., Greenberg, J.I., Cheresh, D.A., Johnson, R.S., 2008. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature, 456: 814–818. [doi:10.1038/nature07445]PubMedCrossRefGoogle Scholar
  75. Sugatani, J., Yamakawa, K., Yoshinari, K., Machida, T., Takagi, H., Mori, M., Kakizaki, S., Sueyoshi, T., Negishi, M., Miwa, M., 2002. Identification of a defect in the UGT1A1 gene promoter and its association with hyperbilirubinemia. Biochem. Biophys. Res. Commun., 292(2): 492–497. [doi:10.1006/bbrc.2002.6683]PubMedCrossRefGoogle Scholar
  76. Suh, K.W., Kim, J.H., Kim, D.Y., Kim, Y.B., Lee, C., Choi, S., 2006. Which gene is a dominant predictor of response during FOLFOX chemotherapy for the treatment of metastatic colorectal cancer, the MTHFR or XRCC1 gene? Ann. Surg. Oncol., 13(11):1379–1385. [doi:10.1245/s10434-006-9112-y]PubMedCrossRefGoogle Scholar
  77. van Kuilenburg, A.B., Meinsma, R., Zoetekouw, L., van Gennip, A.H., 2002. Increased risk of grade IV neutropenia after administration of 5-fluorouracil due to a dihydropyrimidine dehydrogenase deficiency: high prevalence of the IVS14+1G>A mutation. Int. J. Cancer, 101(3):253–258. [doi:10.1002/ijc.10599]PubMedCrossRefGoogle Scholar
  78. Villafranca, E., Okruzhnov, Y., Dominguez, M.A., García-Foncillas, J., Azinovic, I., Martínez, E., Illarramendi, J.J., Arias, F., Martínez Monge, R., Salgado, E., et al., 2001. Polymorphisms of the repeated sequences in the enhancer region of the thymidylate synthase gene promoter may predict downstaging after preoperative chemoradiation in rectal cancer. J. Clin. Oncol., 19(6): 1779–1786.PubMedGoogle Scholar
  79. Walther, A., Johnstone, E., Swanton, C., Midgley, R., Tomlinson, I., Kerr, D., 2009. Genetic prognostic and predictive markers in colorectal cancer. Nat. Rev. Cancer, 9(7):489–499. [doi:10.1038/nrc2645]PubMedCrossRefGoogle Scholar
  80. Wang, T.L., Diaz, L.A.Jr., Romans, K., Bardelli, A., Saha, S., Galizia, G., Choti, M., Donehower, R., Parmigiani, G., Shih, I.M., et al., 2004. Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. PNAS, 101(9):3089–3094. [doi:10.1073/pnas.0308716101]PubMedCrossRefGoogle Scholar
  81. Wang, Y., Jatkoe, T., Zhang, Y., Mutch, M.G., Talantov, D., Jiang, J., McLeod, H.L., Atkins, D., 2004. Gene expression profiles and molecular markers to predict recurrence of Dukes’ B colon cancer. J. Clin. Oncol., 22(9): 1564–1571. [doi:10.1200/JCO.2004.08.186]PubMedCrossRefGoogle Scholar
  82. Watson, R.G., McLeod, H.L., 2011. Pharmacogenomic contribution to drug response. Cancer J., 17(2):80–88. [doi:10.1097/PPO.0b013e3182147432]PubMedCrossRefGoogle Scholar
  83. Weaver, D.A., Crawford, E.L., Warner, K.A., Elkhairi, F., Khuder, S.A., Willey, J.C., 2005. ABCC5, ERCC2, XPA and XRCC1 transcript abundance levels correlate with cisplatin chemoresistance in non-small cell lung cancer cell lines. Mol. Cancer, 4(1):18. [doi:10.1186/14764598-4-18]PubMedCrossRefGoogle Scholar
  84. Wei, X., McLeod, H.L., McMurrough, J., Gonzalez, F.J., Fernandez-Salguero, P., 1996. Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J. Clin. Invest., 98(3):610–615. [doi:10.1172/JCI118830]PubMedCrossRefGoogle Scholar
  85. Weisberg, I., Tran, P., Christensen, B., Sibani, S., Rozen, R., 1998. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol. Genet. Metab., 64(3): 169–172. [doi:10.1006/mgme.1998.2714]PubMedCrossRefGoogle Scholar
  86. Weitz, J., Koch, M., Debus, J., Höhler, T., Galle, P.R., Büchler, M.W., 2005. Colorectal cancer. Lancet, 365(9454): 153–165. [doi:10.1016/S0140-6736(05)17706-X]PubMedCrossRefGoogle Scholar
  87. Yin, M., Yan, J., Martinez-Balibrea, E., Graziano, F., Lenz, H.J., Kim, H.J., Robert, J., Im, S.A., Wang, W.S., Etienne-Grimaldi, M.C., et al., 2011. ERCC1 and ERCC2 polymorphisms predict clinical outcomes of oxaliplatin-based chemotherapies in gastric and colorectal cancer: a systemic review and meta-analysis. Clin. Cancer Res., 17(6):1632–1640. [doi:10.1158/1078-0432.CCR-10-2169]PubMedCrossRefGoogle Scholar
  88. Zhang, W., Press, O.A., Haiman, C.A., Yang, D.Y., Gordon, M.A., Fazzone, W., El-Khoueiry, A., Iqbal, S., Sherrod, A.E., Lurje, G., et al., 2007. Association of methylenetetrahydrofolate reductase gene polymorphisms and sex-specific survival in patients with metastatic colon cancer. J. Clin. Oncol., 25(24):3726–3731. [doi:10.1200/JCO.2007.11.4710]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wei-qin Jiang
    • 1
  • Fang-fang Fu
    • 2
  • Yang-xia Li
    • 2
  • Wei-bin Wang
    • 1
  • Hao-hao Wang
    • 1
  • Hai-ping Jiang
    • 1
  • Li-song Teng
    • 1
  1. 1.Cancer Center, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Institute of Infectious Diseases, the First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations