Journal of Zhejiang University SCIENCE B

, Volume 11, Issue 5, pp 323–331 | Cite as

Neurochip based on light-addressable potentiometric sensor with wavelet transform de-noising

  • Qing-jun Liu
  • Wei-wei Ye
  • Hui Yu
  • Ning Hu
  • Li-ping Du
  • Ping Wang
Article

Abstract

Neurochip based on light-addressable potentiometric sensor (LAPS), whose sensing elements are excitable cells, can monitor electrophysiological properties of cultured neuron networks with cellular signals well analyzed. Here we report a kind of neurochip with rat pheochromocytoma (PC12) cells hybrid with LAPS and a method of de-noising signals based on wavelet transform. Cells were cultured on LAPS for several days to form networks, and we then used LAPS system to detect the extracellular potentials with signals de-noised according to decomposition in the time-frequency space. The signal was decomposed into various scales, and coefficients were processed based on the properties of each layer. At last, signal was reconstructed based on the new coefficients. The results show that after de-noising, baseline drift is removed and signal-to-noise ratio is increased. It suggests that the neurochip of PC12 cells coupled to LAPS is stable and suitable for long-term and non-invasive measurement of cell electrophysiological properties with wavelet transform, taking advantage of its time-frequency localization analysis to reduce noise.

Key words

Neurochip Light-addressable potentiometric sensor (LAPS) Wavelet transform Threshold De-noising 

CLC number

Q27 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artursson, T., Holmberg, M., 2002. Wavelet transform of electronic tongue data. Sens. Actuators B: Chem., 87(2):379–391. [doi:10.1016/S0925-4005(02)00270-8]CrossRefGoogle Scholar
  2. Bousse, L., 1996. Whole cell biosensors. Sens. Actuators B: Chem., 34(1–3):270–275. [doi:10.1016/S0925-4005(96)01906-5]CrossRefGoogle Scholar
  3. Chalfie, M., Perlman, R.L., 1976. Studies of a transplantable rat pheochromocytoma: biochemical characterization and catecholamine secretion. J. Pharmacol. Exp. Ther., 197(3):615–622.PubMedGoogle Scholar
  4. Fanigliulo, A., Accossato, P., Adami, M., Lanzi, M., Martinoia, S., Paddeu, S., Parodi, M.T., Rossi, A., Sartore, M., Grattarola, M., et al., 1996. Comparison between a LAPS and an FET-based sensor for cell-metabolism detection. Sens. Actuators B: Chem., 32(1):41–48. [doi:10.1016/0925-4005(96)80107-9]CrossRefGoogle Scholar
  5. Fromherz, P., 2003. Semiconductor chips with ion channels, nerve cells and brain. Physica E, 16(1):24–34. [doi:10.1016/S1386-9477(02)00578-7]CrossRefGoogle Scholar
  6. Fromherz, P., Offenhausser, A., Vetter, T., Weis, J., 1991. A neuron-silicon junction: a retzius cell of the leech on an insulated-gate field effect transistor. Science, 252(5010):1290–1293. [doi:10.1126/science.1925540]CrossRefPubMedGoogle Scholar
  7. Gilchrist, K.H., Giovangrandi, L., Whittington, R.H., Kovacs, G.T.A., 2005. Sensitivity of cell-based biosensors to environmental variables. Biosens. Bioelectron., 20(7):1397–1406. [doi:10.1016/j.bios.2004.06.007]CrossRefPubMedGoogle Scholar
  8. Greene, L.A., Tischler, A.S., 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA, 73(7):2424–2428. [doi:10.1073/pnas.73.7.2424]CrossRefPubMedGoogle Scholar
  9. Hafeman, D.G., Parce, J.W., McConnell, H.M., 1988. Light-addressable potentiometric sensor for biochemical systems. Science, 240(4856):1182–1185. [doi:10.1126/science.3375810]CrossRefPubMedGoogle Scholar
  10. Hassenklöver, T., Predehl, S., Pilli, J., Ledwolorz, J., Assmann, M., Bickmeyer, U., 2006. Bromophenols, both present in marine organisms and in industrial flame retardants, disturb cellular Ca2+ signaling in neuroendocrine cells (PC12). Aquat. Toxicol., 76(1):37–45. [doi:10.1016/j.aquatox.2005.09.004]CrossRefPubMedGoogle Scholar
  11. Hegg, C.C., Miletic, V., 1996. Acute exposure to inorganic lead modifies high-threshold voltage-gated calcium currents in rat PC12 cells. Brain Res., 738(2):333–336. [doi:10.1016/S0006-8993(96)00999-7]CrossRefGoogle Scholar
  12. Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its application to conduction and excitation in never. J. Physiol., 117:500–544.PubMedGoogle Scholar
  13. Huys, R., Braeken, D., van Meerbergen, B., Winters, K., Eberle, W., Loo, J., Tsvetanova, D., Chen, C., Severi, S., Yitzchaik, S., et al., 2008. Novel concepts for improved communication between nerve cells and silicon electronic devices. Solid State Electron., 52(4):533–539. [doi:10.1016/j.sse.2007.10.025]CrossRefGoogle Scholar
  14. Ismail, A.B., Yoshinobu, T., Iwasaki, H., Sugihara, H., Yukimasa, T., Hirata, I., Iwata, H., 2003. Investigation on light-addressable potentiometric sensor as a possible cell-semiconductor hybrid. Biosens. Bioelectron., 18(12):1509–1514. [doi:10.1016/S0956-5663(03)00129-5]CrossRefPubMedGoogle Scholar
  15. Kovacs, G.T.A., 2003. Electronic sensors with living cellular components. Proc. IEEE, 91(6):915–929. [doi:10.1109/JPROC.2003.813580]CrossRefGoogle Scholar
  16. Liu, Q., Cai, H., Xu, Y., Li, Y., Li, R., Wang, P., 2006. Olfactory cell-based biosensor: a first step towards a neurochip of bioelectronic nose. Biosens. Bioelectron., 22(2):318–322. [doi:10.1016/j.bios.2006.01.016]CrossRefPubMedGoogle Scholar
  17. Liu, Q., Yu, J., Huang, H., Cai, H., Xu, Y., Li, Y., Li, R., Wang, P., 2007. Embryonic stem cells as a novel cell source of cell-based biosensor. Biosens. Bioelectron., 22(6):810–815. [doi:10.1016/j.bios.2006.03.006]CrossRefPubMedGoogle Scholar
  18. Maher, M.P., Pine, J., Wright, J., Tai, Y.C., 1999. The neurochip: a new multielectrode device for stimulation and recording from cultured neurons. J. Neurosci. Meth., 87(1):45–56. [doi:10.1016/S0165-0270(98)00156-3]CrossRefGoogle Scholar
  19. Manganiello, L., Vega, C., Ros, A., Valcarcel, M., 2002. Use of wavelet transform to enhance piezoelectric signals for analytical purposes. Anal. Chim. Acta, 456(1):93–103. [doi:10.1016/S0003-2670(02)00009-0]CrossRefGoogle Scholar
  20. Nakagawa, S., Yamamoto, K., 1997. Speech recognition using hidden Markov models based on segmental statistics. Syst. Comput. Jpn, 28(7):31–38. [doi:10.1002/(SICI)1520-684X(19970630)28:7<31::AID-SCJ4>3.3.CO;2-O]CrossRefGoogle Scholar
  21. Neher, E., 2001. Molecular biology meets microelectronics. Nat. Biotechnol., 19(2):114. [doi:10.1038/84359]CrossRefPubMedGoogle Scholar
  22. Pancrazio, J.J., Whelan, J.P., Borkholder, D.A., Ma, W., Stenger, D.A., 1999. Development and application of cell-based biosensors. Ann. Biomed. Eng., 27(6):697–711. [doi:10.1114/1.225]CrossRefPubMedGoogle Scholar
  23. Parak, W.J., George, M., Domke, J., Radmacher, M., Behrends, J.C., Denyer, M.C., Gaub, H.E., 2000. Can the light-addressable potentiometric sensor (LAPS) detect extracellular potentials of cardiac myocytes? IEEE. Trans. Biomed. Eng., 47(8):1106–1113. [doi:10.1109/10.855939]CrossRefPubMedGoogle Scholar
  24. Sardy, S., Tseng, P., Bruce, A., 2001. Robust wavelet denoising. IEEE Trans. Signal Process., 49(6):1146–1152. [doi:10.1109/78.923297]CrossRefGoogle Scholar
  25. Slaughter, G., Hobson, R.S., 2009. An impedimetric biosensor based on PC12 cells for the monitoring of exogenous agents. Biosens. Bioelectron., 24(5):1153–1158. [doi:10.1016/j.bios.2008.06.060]CrossRefPubMedGoogle Scholar
  26. Stein, B., George, M., Gaub, H.E., Parak, W.J., 2004. Extracellular measurements of averaged ionic currents with the light-addressable potentiometric sensor (LAPS). Sens. Actuators B: Chem., 98(2–3):299–304. [doi:10.1016/j.snb.2003.10.034]CrossRefGoogle Scholar
  27. Stenger, D.A., Gross, G.W., Keefer, E.W., Shaffer, K.M., Andreadis, J.D., Ma, W., Pancrazio, J.J., 2001. Detection of physiologically active compounds using cell-based biosensors. Trends Biotechnol., 19(8):304–309. [doi:10.1016/S0167-7799(01)01690-0]CrossRefPubMedGoogle Scholar
  28. Wang, P., Liu, Q., 2009. Cell-based Biosensors: Principles and Applications. Artech House Publisher, Norwood, MA, USA, p.1–10.Google Scholar
  29. Wang, P., Xu, G., Qin, L., Xu, Y., Li, Y., Li, R., 2005. Cell-based biosensors and its application in biomedicine. Sens. Actuators B: Chem., 108(1–2):576–584. [doi:10.1016/j.snb.2004.11.056]Google Scholar
  30. Xu, G., Ye, X., Qin, L., Xu, Y., Li, Y., Li, R., Wang, P., 2005. Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosens. Bioelectron., 20(9):1757–1763. [doi:10.1016/j.bios.2004.06.037]CrossRefPubMedGoogle Scholar
  31. Zhu, K., Wong, Y.S., Hong, G.S., 2009. Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results. Int. J. Mach. Tool. Manu., 49(7–8):537–553. [doi:10.1016/j.ijmachtools.2009.02.003]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Qing-jun Liu
    • 1
    • 2
  • Wei-wei Ye
    • 1
  • Hui Yu
    • 1
  • Ning Hu
    • 1
  • Li-ping Du
    • 1
  • Ping Wang
    • 1
    • 2
  1. 1.Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical EngineeringZhejiang UniversityHangzhouChina
  2. 2.State Key Laboratory of Transducer TechnologyChinese Academy of SciencesShanghaiChina

Personalised recommendations