Advertisement

Journal of Zhejiang University SCIENCE B

, Volume 11, Issue 5, pp 342–349 | Cite as

Expression of a bee venom phospholipase A2 from Apis cerana cerana in the baculovirus-insect cell

  • Li-rong Shen
  • Mei-hui Ding
  • Li-wen Zhang
  • Wei-guang Zhang
  • Liang Liu
  • Duo Li
Article

Abstract

Bee venom phospholipase A2 (BvPLA2) is a lipolytic enzyme that catalyzes the hydrolysis of the sn-2 acyl bond of glycerophospholipids to liberate free fatty acids and lysophospholipids. In this work, a new BvPLA2 (AccPLA2) gene from the Chinese honeybee (Apis cerana cerana) venom glands was inserted into bacmid to construct a recombinant transfer vector. Tn-5B-4 (Tn) cells were transfected with the recombinant bacmid DNA for expression. Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed a double band with molecular weights of 16 and 18 kDa. Products of hexahistidine AccPLA2 fusion protein accumulated up to 5.32% of the total cellular proteins. The AccPLA2 fusion protein was cross reactive with the anti-AmPLA2 (BvPLA2 of the European honeybee, Apis mellifera) polyclonal serum. The reaction resulted in a double glycosylation band, which agrees with the band generated by the native AmPLA2 in Western blot analysis. The PLA2 activity of the total extracted cellular protein in the hydrolyzing egg yolk is about 3.16 μmol/(min·mg). In summary, the recombinant AccPLA2 protein, a native BvPLA2-like structure with corresponding biological activities, can be glycosylated in Tn cells. These findings provided fundamental knowledge for potential genetic engineering to produce AccPLA2 in the pharmaceutical industry.

Key words

Apis cerana cerana Bee venom phospholipase A2 (BvPLA2Insect cell Expression 

CLC number

Q781 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altmann, F., Kubelka, V., Staudacher, E., Uhl, K., Marz, L., 1991. Characterization of the isoforms of phospholipase A2 from honeybee venom. Insect Biochem., 21(5):467–472. [doi:10.1016/0020-1790(91)90099-Z]CrossRefGoogle Scholar
  2. Altmann, F., Staudacher, E., Wilson, I.B.H., Marz, L., 1999. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconjugate J., 16(2):109–123. [doi:10.1023/A:1026488408951]CrossRefGoogle Scholar
  3. Annand, R.R., Kontoyianni, M., Penzotti, J.E., Dudler, T., Lybrand, T.P., Gelb, M.H., 1996. Active site of bee venom phospholipase A2: the role of histidine-34, As-partate-64 and Tyrosine-87. Biochemistry, 35(14):4591–4601. [doi:10.1021/bi9528412]CrossRefPubMedGoogle Scholar
  4. Balsinde, J., Winstead, M.V., Dennis, E.A., 2002. Phospholipase A2 regulation of arachidonic acid mobilization. FEBS Lett., 531(1):2–6. [doi:10.1016/S0014-5793(02)03413-0]CrossRefPubMedGoogle Scholar
  5. Dennis, E.A., 1994. Diversity of group types, regulation and function of phospholipase A2. J. Biochem., 269(18):13057–13060.Google Scholar
  6. Dennis, E.A., 1997. A growing phospholipase A2 superfamily of signal transduction enzymes. Trends Biochem. Sci., 22(1):1–2. [doi:10.1016/S0968-0004(96)20031-3]CrossRefPubMedGoogle Scholar
  7. Dudler, T., Chen, W.Q., Wang, S.S., Schneider, T., Annand, R.R., Dempcy, R.O., Crameri, R., Gmachl, M., Suter, M., Gelb, M.H., 1992. High-level expression in Escherichia coli and rapid purification of enzymatically active honey bee venom phospholipase A2. Biochim. Biophys. Acta, 1165(2):201–210.PubMedGoogle Scholar
  8. Fenard, D., Lambeau, G., Valentin, E., Lefebvre, J.C., Lazdunski, M., Doglio, A., 1999. Secreted phospholipases A2, a new class of HIV inhibitors that block virus entry into host cells. J. Clin. Invest., 104(5):611–618. [doi:10.1172/JCI6915]CrossRefPubMedGoogle Scholar
  9. Fenard, D., Lambeau, G., Maurin, T., Lefebvre, J.C., Doglio, A., 2001. A peptide derived from bee venom-secreted phospholipase A2 inhibits replication of T-cell tropic HIV-1 strains via interaction with the CXCR4 chemokine receptor. Mol. Pharmacol., 60(2):341–347.PubMedGoogle Scholar
  10. Habermann, E., 1972. Bee and wasp venoms. Science, 177(4046):314–322. [doi:10.1126/science.177.4046.314]CrossRefPubMedGoogle Scholar
  11. King, T.P., Spangfort, M.D., 2000. Structure and biology of stinging insect venom allergens. Int. Arch. Allergy Imm., 123(2):99–106. [doi:10.1159/000024440]CrossRefGoogle Scholar
  12. Kubelka, V., Almann, F., Staudacher, E., Tretter, V., Marz, L., Hard, K., Kamerling, J.P., Vliegenthart, J.F., 1993. Primary structures of the N-linked carbohydrate chains from honeybee venom phospholipase A2. Eur. J. Biochem., 213(3):1193–1204. [doi:10.1111/j.1432-1033.1993.tb17870.x]CrossRefPubMedGoogle Scholar
  13. Kuchler, K., Gmachl, M., Sippl, M.J., Krell, G., 1989. Analysis of the cDNA for phospholipase A2 from honeybee venom glands-the deduced amino acid sequence reveals homology to the corresponding vertebrate enzymes. Eur. J. Biochem., 184(1):249–254. [doi:10.1111/j.1432-1033.1989.tb15014.x]CrossRefPubMedGoogle Scholar
  14. Li, J.H., Zhang, C.X., Shen, L.R., Tang, Z.H., Cheng, J.A., 2005. Expression and regulation of phospholipase A2 in venom gland of the Chinese honeybee, Apis cerana cerana. Arch. Insect Biochem. Physiol., 60(1):1–12. [doi:10.1002/arch.20075]CrossRefPubMedGoogle Scholar
  15. Luckow, V.A., Lee, S.C., Barry, G.F., Olins, P.O., 1993. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J. Virol., 67(8):4566–4579.PubMedGoogle Scholar
  16. Mingarro, I., Prez-Paya, E., Pinilla, C., Appel, J.R., Houghten, R.A., Blondelle, S.E., 1995. Activation of bee venom phospholipase A2 through a peptide-enzyme complex. FEBS Lett., 372(1):131–134. [doi:10.1016/0014-5793(95)00964-B]CrossRefPubMedGoogle Scholar
  17. Mukherjee, A.B., Miele, L., Pattabiraman, N., 1994. Phospholipases A2 enzymes: regulation and hysiological role. Biochem. Pharmacol., 48(1):1–10. [doi:10.1016/0006-2952(94)90216-X]CrossRefPubMedGoogle Scholar
  18. Murakami, M., Kudo, I., 2002. Phospholipase A2. J. Biochem., 131(2):285–292.PubMedGoogle Scholar
  19. Nakashima, S., Kitamoto, K., Arioka, M., 2004. The catalytic activity, but not receptor binding, of PLA2s plays a critical role for neurite outgrowth induction in PC12 cells. Brain Res., 1015(1/2):207–211. [doi:10.1016/j.brainres.2004.04.069]CrossRefPubMedGoogle Scholar
  20. Oldroyd, B.P., Wongsiri, S., 2006. Asian Honeybees. Biology, Conservation, and Human Interactions. Harvard University Press, Cambridge, Massachusetts, USA, p.36–64.Google Scholar
  21. Owen, M.D., Pfaff, L.A., Reisman, R.E., Wypych, J., 1990. Phospholipase A2 in venom extracts from honey bees (Apis mellifera L.) of different ages. Toxicon, 28(7):813–820. [doi:10.1016/S0041-0101(09)80004-4]CrossRefPubMedGoogle Scholar
  22. Palomares, L.A., Joosten, C.E., Hughes, P.R., Granados, R.R., Shuler, M.L., 2003. Novel insect cell line capable of complex N-glycosylation and sialylation of recombinant proteins. Biotechnol. Prog., 19(1):185–192. [doi:10.1021/bp025598o]CrossRefPubMedGoogle Scholar
  23. Rodriguez de Turco, E.B., Jackson, F.R., DeCoster, M.A., Kolko, M., Bazan, N.G., 2002. Glutamate signalling and secretory phospholipase A2 modulate the release of arachidonic acid from neuronal membranes. J. Neurosci. Res., 68(5):558–567. [doi:10.1002/jnr.10239]CrossRefPubMedGoogle Scholar
  24. Sambrook, J., Russell, D.W., 2002. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, USA.Google Scholar
  25. Schmidt, J.O., 1995. Toxinology of venoms from the honeybee genus Apis. Toxicon, 33(7):917–927. [doi:10.1016/0041-0101(95)00011-A]CrossRefPubMedGoogle Scholar
  26. Scott, D.L., White, S.P., Otwinowski, Z., Yuan, W., Gelb, M.H., Sigler, P.B., 1990a. Interfacial catalysis: the mechanism of phospholipase. Science, 250(4987):1541–1546. [doi:10.1126/science.2274785]CrossRefPubMedGoogle Scholar
  27. Scott, D.L., Otwinowski, Z., Gelb, M.H., Sigler, P.B., 1990b. Crystal structure of bee-venom phospholipase A2 in a complex with a transition-state analogue. Science, 250(4987):1563–1566. [doi:10.1126/science.2274788]CrossRefPubMedGoogle Scholar
  28. Shang, J.Y., Shao, Y.M., Lang, G.J., Yuan, G., Tang, Z.H., Zhang, C.X., 2007. Expression of two types of acetylcholinesterase gene from the silkworm, Bombyx mori, in insect cells. Insect Sci., 14(6):443–449.Google Scholar
  29. Shen, L.S., Zhang, C.Z., Cheng, J.A., 2002. Cloning and sequencing of genes encoding phospholipase A2 from the venom of Apis cerana cerana and A. mellifera. J. Agric. Biotechnol., 10(1):29–32 (in Chinese).Google Scholar
  30. Shipolini, R.A., Callewaert, G.L., Cottrell, R.C., Vernon, C.A., 1974a. The amino-acid sequence and carbohydrate content of phospholipase A2 from bee venom. Eur. J. Biochem., 48(2):465–476. [doi:10.1111/j.1432-1033.1974.tb03787.x]CrossRefPubMedGoogle Scholar
  31. Shipolini, R.A., Doonan, S., Vernon, C.A., 1974b. The disulphide bridges of phospholipase A2 from bee venom. Eur. J. Biochem., 48(2):477–483. [doi:10.1111/j.1432-1033.1974.tb03788.x]CrossRefPubMedGoogle Scholar
  32. Smith, G.E., Summers, M.D., Fraser, M., 1983. Production of human belta interferon in insect cell with baculovirus expression vectors. J. Mol. Cell. Biol., 3(12):2156–2165.Google Scholar
  33. Soldatova, L.N., Crameri, R., Gmachl, M., Kemeny, D.M., Schmidt, M., Weber, M., Mueller, U.R., 1998. Superior biologic activity of the recombinant bee venom allergen hyaluronidase expressed in baculovirus infected insect cells as compared with Escherichia coli. J. Allergy Clin. Immunol., 101(5):691–698. [doi:10.1016/S0091-6749(98)70179-4]CrossRefPubMedGoogle Scholar
  34. Toki, D., Sarkar, M., Yip, B., Reck, F., Joziasse, D., Fukuda, M., Schachter, H., Brockhausen, I., 1997. Expression of stable human O-glycan core 2β-1,6-N-acetylglucosaminyltransferase in Sf9 insect cells. Biochem. J., 325(1):63–69.PubMedGoogle Scholar
  35. Whitfield, C.W., Behura, S.K., Berlocher, S.H., Clark, A.G.J., Johnston, S., Sheppard, W.S., Smith, D.R., Suarez, A.V., Weaver, D., Tsutsui, N.D., 2006. Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science, 314(5799):642–645. [doi:10.1126/science.1132 772]CrossRefPubMedGoogle Scholar
  36. Xu, P., Shi, M., Chen, X.X., 2009. Antimicrobial peptide evolution in the Asiatic honey bee Apis cerana. PLoS ONE, 4(1):e4239. [doi:10.1371/journal.pone.0004239]CrossRefPubMedGoogle Scholar
  37. Zhang, C.X., Tang, X.D., Cheng, J.A., 2008. The utilization and industrialization of insect resources in China. Entomol. Res., 38(S1):S38–S47. [doi:10.1111/j.1748-5967.2008.00173.x]CrossRefGoogle Scholar
  38. Zhao, M., Brunk, U.T., Eaton, J.W., 2001. Delayed oxidant-induced cell death involves activation of phospholipase A2. FEBS Lett., 509(3):399–404. [doi:10.1016/S0014-5793(01)03184-2]CrossRefPubMedGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Li-rong Shen
    • 1
  • Mei-hui Ding
    • 1
  • Li-wen Zhang
    • 1
  • Wei-guang Zhang
    • 1
  • Liang Liu
    • 2
  • Duo Li
    • 1
  1. 1.Department of Food Science and NutritionZhejiang UniversityHangzhouChina
  2. 2.Department of Agriculture and Natural ResourcesDelaware State UniversityDoverUSA

Personalised recommendations