Journal of Zhejiang University SCIENCE B

, Volume 9, Issue 10, pp 787–792 | Cite as

Biological control of aflatoxin contamination of crops

  • Yan-ni Yin
  • Lei-yan Yan
  • Jin-hua Jiang
  • Zhong-hua MaEmail author


Aflatoxins produced primarily by two closely related fungi, Aspergillus flavus and Aspergillus parasiticus, are mutagenic and carcinogenic in animals and humans. Of many approaches investigated to manage aflatoxin contamination, biological control method has shown great promise. Numerous organisms, including bacteria, yeasts and nontoxigenic fungal strains of A. flavus and A. parasiticus, have been tested for their ability in controlling aflatoxin contamination. Great successes in reducing aflatoxin contamination have been achieved by application of nontoxigenic strains of A. flavus and A. parasiticus in fields of cotton, peanut, maize and pistachio. The nontoxigenic strains applied to soil occupy the same niches as the natural occurring toxigenic strains. They, therefore, are capable of competing and displacing toxigenic strains. In this paper, we review recent development in biological control of aflatoxin contamination.

Key words

Aflatoxin Aspergillus Biocontrol Food safety 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbas, H.K., Zablotowicz, R.M., Bruns, H.A., Abel, C.A., 2006. Biocontrol of aflatoxin in corn by inoculation with non-aflatoxigenic Aspergillus flavus isolates. Biocontrol Sci. Technol., 16(5):437–449. [doi:10.1080/095831505 00532477]CrossRefGoogle Scholar
  2. Bhatnagar, D., Cary, J.W., Ehrlich, K., Yu, J., Cleveland, T.E., 2006. Understanding the genetics of regulation of aflatoxin production and Aspergillus flavus development. Mycopathologia, 162(3):155–166. [doi:10.1007/s11046-006-0050-9]PubMedCrossRefGoogle Scholar
  3. Brown, R.L., Cotty, P.J., Cleveland, T.E., 1991. Reduction in aflatoxin content of maize by atoxigenic strains of Aspergillus flavus. J. Food Prot., 54(8):623–626.Google Scholar
  4. Cardwell, K.F., Henry, S.H., 2004. Risk of exposure to and mitigation of effect of aflatoxin on human health: a West African example. J. Toxicol. Toxin Rev., 23(2&3):217–247.Google Scholar
  5. Chang, P.K., 2003. The Aspergillus parasiticus protein aflJ interacts with the aflatoxin pathway-specific regulator aflR. Mol. Gen. Genomics, 268(6):711–719.Google Scholar
  6. Chang, P.K., Horn, B.W., Dorner, J.W., 2005. Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genet. Biol., 42(11):914–923. [doi:10.1016/j.fgb.2005.07.004]PubMedCrossRefGoogle Scholar
  7. Cotty, P.J., 1989. Virulence and cultural characteristics of two Aspergillus flavus strains pathogenic on cotton. Phytopathology, 79(7):808–814. [doi:10.1094/Phyto-79-808]CrossRefGoogle Scholar
  8. Cotty, P.J., 1990. Effect of atoxigenic strains of Aspergillus flavus on aflatoxin contamination of developing cottonseed. Plant Dis., 74(3):233–235. [doi:10.1094/PD-74-0233]CrossRefGoogle Scholar
  9. Cotty, P.J., 1994. Influence of field application of an atoxigenic strain of Aspergillus flavus on the populations of A. flavus infecting cotton bolls and on the aflatoxin content of cottonseed. Phytopathology, 84(11):1270–1277. [doi: 10.1094/Phyto-84-1270]CrossRefGoogle Scholar
  10. Criseo, G., Racco, C., Romeo, O., 2008. High genetic variability in non-aflatoxigenic A. flavus strains by using Quadruplex. Int. J. Food Microbiol., 125(3):341–343. [doi:10.1016/j.ijfoodmicro.2008.04.020]PubMedCrossRefGoogle Scholar
  11. Dorner, J.W., 2004. Biological control of aflatoxin contamination of crops. J. Toxicol. Toxin Rev., 23(2&3):425–450.Google Scholar
  12. Dorner, J.W., 2008. Management and prevention of mycotoxins in peanuts. Food Addit. Contam., 25(2):203–208. [doi:10.1080/02652030701658357]PubMedCrossRefGoogle Scholar
  13. Dorner, J.W., Cole, R.J., 2002. Effect of application of nontoxigenic strains of Aspergillus flavus and A. parasiticus on subsequent aflatoxin contamination of peanuts in storage. J. Stored Products Res., 38(4):329–339. [doi:10.1016/S0022-474X(01)00035-2]CrossRefGoogle Scholar
  14. Dorner, J.W., Cole, R.J., Blankenship, P.D., 1992. Use of a biocompetitive agent to control preharvest aflatoxin in drought stressed peanuts. J. Food Prot., 55(11):888–892.Google Scholar
  15. Dorner, J.W., Cole, R.J., Blankenship, P., 1998. Effect of inoculum agents on preharvest aflatoxin contamination of peanuts. Biol. Control, 12(3):171–176. [doi:10.1006/bcon.1998.0634]CrossRefGoogle Scholar
  16. Ehrlich, K.C., Cotty, P.J., 2004. An isolate Aspergillus flavus used to reduce aflatoxin contamination in cottonseed has a defective polyketide synthase gene. J. Microbiol. Biotehnol., 65(4):473–478.Google Scholar
  17. Ehrlich, K.C., Yu, J., Cotty, P.J., 2005. Aflatoxin biosynthesis gene clusters and flanking regions. J. Appl. Microbiol., 99(3):518–527. [doi:10.1111/j.1365-2672.2005.02637.x]PubMedCrossRefGoogle Scholar
  18. Garber, N., Cotty, P.J., 2006. Timing of Herbicide Applications may Influence Efficacy of Aflatoxin Biocontrol. Beltwide Cotton Conferences, San Antonio, TX, USA p.11.Google Scholar
  19. Hua, S.S.T., Baker, J.L., Flores-Espiritu, M., 1999. Interactions of saprophytic yeasts with a nor mutant of Aspergillus flavus. Appl. Environ. Microbiol., 65(6):2738–2740.PubMedGoogle Scholar
  20. Masoud, W., Kaltoft, C.H., 2006. The effects of yeasts involved in the fermentation of coffea arabica in East Africa on growth and ochratoxin A (OTA) production by Aspergillus ochraceus. Int. J. Food Microbiol., 106(2): 229–234. [doi:10.1016/j.ijfoodmicro.2005.06.015]PubMedCrossRefGoogle Scholar
  21. Nesci, A.V., Bluma, R.V., Etcheverry, M.G., 2005. In vitro selection of maize rhizobacteria to study potential biological control of Aspergillus section Flavi and aflatoxin production. Eur. J. Plant Pathol., 113(2):159–171. [doi: 10.1007/s10658-005-5548-3]CrossRefGoogle Scholar
  22. Palumbo, J.D., Baker, J.L., Mahoney, N.E., 2006. Isolation of bacterial antagonists of Aspergillus flavus from almonds. Microb. Ecol., 52(1):45–52. [doi:10.1007/s00248-006-9096-y]PubMedCrossRefGoogle Scholar
  23. Payne, G.A., Brown, M.P., 1998. Genetics and physiology of aflatoxin biosynthesis. Annu. Rev. Phytopathol., 36(1): 329–362. [doi:10.1146/annurev.phyto.36.1.329]PubMedCrossRefGoogle Scholar
  24. Pitt, J.I., Hocking, A.D., 2006. Mycotoxins in Australia: biocontrol of aflatoxin in peanuts. Mycopathologia, 162(3): 233–243. [doi:10.1007/s11046-006-0059-0]PubMedCrossRefGoogle Scholar
  25. van Egmond, H.P., Jonker, M.A., 2004. Worldwide regulations on aflatoxins—the situation in 2002. J. Toxicol. Toxin Rev., 23(2&3):273–293.Google Scholar
  26. Yin, Y., Lou, T., Jiang, J., Yan, L., Michailides, T.J., Ma, Z., 2008. Molecular characterization of toxigenic and atoxigenic Aspergillus flavus isolates collected from soil in various agroecosystems in China. Food Microbiol., manuscript sumbitted for publication.Google Scholar
  27. Yu, J., Chang, P.K., Ehrlich, K.C., Cary, J.W., Bhatnagar, D., Cleveland, T.E., Payne, G.A., Linz, J.E., Woloshuk, C.P., Bennett, J.W., 2004. Clustered pathway genes in aflatoxin biosynthesis. Appl. Environ. Microbiol., 70(3):1253–1262. [doi:10.1128/AEM.70.3.1253-1262.2004]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Yan-ni Yin
    • 1
  • Lei-yan Yan
    • 1
  • Jin-hua Jiang
    • 1
  • Zhong-hua Ma
    • 1
    Email author
  1. 1.Institute of BiotechnologyZhejiang UniversityHangzhouChina

Personalised recommendations