Journal of Zhejiang University-SCIENCE A

, Volume 20, Issue 10, pp 804–810

# Simulation and experiment of a remotely operated underwater vehicle with cavitation jet technology

• Jing-ke Hu
• Zhe-ming Tong
• Jia-ge Xin
• Can-jun Yang
Correspondence

# 基于空化喷射技术的水下机器人射流清洗仿真与 实验

## 摘要

### 方 法

1. 通过计算流体动力学 (CFD) 仿真与实验, 针 对 ROV 水下喷射模型, 在不同状态和不同参数 下对水下射流的规律进行测试与比较. 2. 实验对 比验证在不同喷射距离下所设计的空化射流清

### 结 论

1. 当入口压力 P=30 MPa, 孔径 d=2 mm, 出口长 度 L=16 mm 和出口直径 D=16 mm 时, 水下喷嘴 具有更高的清洁度和清洁效率, 可以满足清洁要 求. 2. ROV 喷嘴离水下泥浆越远, 冲刷深度越浅. 3. 所设计的 ROV 空化喷射清洁装置与目标的距 离越近, 清洗强度越高; 然而, 当压力恒定且距 离太近时, 过度阻力会削弱冲洗强度. 洗装置清理海底生物的能力.

## Supplementary material

11582_2019_243_MOESM1_ESM.pdf (391 kb)
Simulation and experiment of a remotely operated underwater vehicle with cavitation jet technology

## References

1. Biçer B, Sou A, 2016. Application of the improved cavitation model to turbulent cavitating flow in fuel injector nozzle. Applied Mathematical Modelling, 40(7-8):4712–4726.
2. Chen YJ, Tong ZM, Wu WT, et al., (2019). Achieving natural ventilation potential in practice: control schemes and levels of automation. Applied Energy, 235:1141–1152.
3. Cheng F, Ji WX, Qian CH, et al., (2018). Cavitation bubbles dynamics and cavitation erosion in water jet. Results in Physics, 9:1585–1593.
4. Cheng ZW, Tong SG, Tong ZM., (2019). Bi-directional nozzle control of multistage radial-inflow turbine for optimal part-load operation of compressed air energy storage. Energy Conversion and Management, 181:485–500.
5. Duraiselvam M, Galun R, Siegmann S, et al. 2006. Liquid impact erosion characteristics of martensitic stainless steel laser clad with Ni-based intermetallic composites and matrix composites. Wear, 261(10):1140–1149.
6. García-Valdovinos LG, Salgado-Jiménez T, Bandala-Sánchez M, et al. 2014. Modelling, design and robust control of a remotely operated underwater vehicle. International Journal of Advanced Robotic Systems, 11(1):1.
7. Goheen KR, Jefferys ER, 1990. Multivariable self-tuning autopilots for autonomous and remotely operated underwater vehicles. IEEE Journal of Oceanic Engineering, 15(3):144–151.
8. Hachicha S, Zaoui C, Dallagi H, et al., (2019). Innovative design of an underwater cleaning robot with a two arm manipulator for hull cleaning. Ocean Engineering, 181:303–313.
9. Ji SM, Ge JQ, Tan DP, 2017. Wall contact effects of particle-wall collision process in a two-phase particle fluid. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(12):958–973.
10. Khojasteh D, Kamali R., (2017). Design and dynamic study of a ROV with application to oil and gas industries of Persian gulf. Ocean Engineering, 136:18–30.
11. Marcon A, Melkote SN, Castle J, et al. 2016. Effect of jet velocity in co-flow water cavitation jet peening. Wear, 360–361:38–50.
12. Tong ZM, Li Y, Westerdahl D, et al. 2019a. Exploring the effects of ventilation practices in mitigating in-vehicle exposure to traffic-related air pollutants in China. Environment International, 127: 773–784.
13. Tong ZM, Cheng ZW, Tong SG, 2019b. Preliminary design of multistage radial turbines based on rotor loss characteristics under variable operating conditions. Energies, 12(13): 2550.
14. Yamaguchi A, Shimizu S, 1987. Erosion due to impingement of cavitating jet. Journal of Fluids Engineering, 109(4): 442–447.
15. Zhang JH, Wang D, Xu B, et al. 2018. Experimental and numerical investigation of flow forces in a seat valve using a damping sleeve with orifices. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(6):417–430.

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

## Authors and Affiliations

• Jing-ke Hu
• 1
• 2
• Zhe-ming Tong
• 1
• 2
• Jia-ge Xin
• 2
• Can-jun Yang
• 1
• 2
1. 1.State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhouChina
2. 2.School of Mechanical EngineeringZhejiang UniversityHangzhouChina