Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 20, Issue 10, pp 804–810 | Cite as

Simulation and experiment of a remotely operated underwater vehicle with cavitation jet technology

  • Jing-ke Hu
  • Zhe-ming TongEmail author
  • Jia-ge Xin
  • Can-jun Yang
Correspondence
  • 33 Downloads

基于空化喷射技术的水下机器人射流清洗仿真与 实验

摘要

目 的

污染物质的存在会引起海底环境中的许多经济和 生态问题. 本文以遥控无人潜水器 (ROV) 为基 础承载平台, 实现基于空化喷射清洗技术的水下 结构表面附着物清洗.

创新点

将空化射流清洗技术与 ROV 结合, 并利用空化 泡在清洗表面区域溃灭产生的微射流冲击, 以达 到清理水下表面附着物和污垢层的目的.

方 法

1. 通过计算流体动力学 (CFD) 仿真与实验, 针 对 ROV 水下喷射模型, 在不同状态和不同参数 下对水下射流的规律进行测试与比较. 2. 实验对 比验证在不同喷射距离下所设计的空化射流清

结 论

1. 当入口压力 P=30 MPa, 孔径 d=2 mm, 出口长 度 L=16 mm 和出口直径 D=16 mm 时, 水下喷嘴 具有更高的清洁度和清洁效率, 可以满足清洁要 求. 2. ROV 喷嘴离水下泥浆越远, 冲刷深度越浅. 3. 所设计的 ROV 空化喷射清洁装置与目标的距 离越近, 清洗强度越高; 然而, 当压力恒定且距 离太近时, 过度阻力会削弱冲洗强度. 洗装置清理海底生物的能力.

关键词

水下喷射 ROV 空化喷射清洁 喷嘴结构 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11582_2019_243_MOESM1_ESM.pdf (391 kb)
Simulation and experiment of a remotely operated underwater vehicle with cavitation jet technology

References

  1. Biçer B, Sou A, 2016. Application of the improved cavitation model to turbulent cavitating flow in fuel injector nozzle. Applied Mathematical Modelling, 40(7-8):4712–4726.  https://doi.org/10.1016/j.apm.2015.11.049 CrossRefGoogle Scholar
  2. Chen YJ, Tong ZM, Wu WT, et al., (2019). Achieving natural ventilation potential in practice: control schemes and levels of automation. Applied Energy, 235:1141–1152.  https://doi.org/10.1016/j.apenergy.2018.11.016 CrossRefGoogle Scholar
  3. Cheng F, Ji WX, Qian CH, et al., (2018). Cavitation bubbles dynamics and cavitation erosion in water jet. Results in Physics, 9:1585–1593.  https://doi.org/10.1016/j.rinp.2018.05.002 CrossRefGoogle Scholar
  4. Cheng ZW, Tong SG, Tong ZM., (2019). Bi-directional nozzle control of multistage radial-inflow turbine for optimal part-load operation of compressed air energy storage. Energy Conversion and Management, 181:485–500.  https://doi.org/10.1016/j.enconman.2018.12.014 CrossRefGoogle Scholar
  5. Duraiselvam M, Galun R, Siegmann S, et al. 2006. Liquid impact erosion characteristics of martensitic stainless steel laser clad with Ni-based intermetallic composites and matrix composites. Wear, 261(10):1140–1149.  https://doi.org/10.1016/j.wear.2006.03.024 CrossRefGoogle Scholar
  6. García-Valdovinos LG, Salgado-Jiménez T, Bandala-Sánchez M, et al. 2014. Modelling, design and robust control of a remotely operated underwater vehicle. International Journal of Advanced Robotic Systems, 11(1):1.  https://doi.org/10.5772/56810 CrossRefGoogle Scholar
  7. Goheen KR, Jefferys ER, 1990. Multivariable self-tuning autopilots for autonomous and remotely operated underwater vehicles. IEEE Journal of Oceanic Engineering, 15(3):144–151.  https://doi.org/10.1109/48.107142 CrossRefGoogle Scholar
  8. Hachicha S, Zaoui C, Dallagi H, et al., (2019). Innovative design of an underwater cleaning robot with a two arm manipulator for hull cleaning. Ocean Engineering, 181:303–313.  https://doi.org/10.1016/j.oceaneng.2019.03.044 CrossRefGoogle Scholar
  9. Ji SM, Ge JQ, Tan DP, 2017. Wall contact effects of particle-wall collision process in a two-phase particle fluid. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(12):958–973.  https://doi.org/10.1631/jzus.A1700039 CrossRefGoogle Scholar
  10. Khojasteh D, Kamali R., (2017). Design and dynamic study of a ROV with application to oil and gas industries of Persian gulf. Ocean Engineering, 136:18–30.  https://doi.org/10.1016/j.oceaneng.2017.03.014 CrossRefGoogle Scholar
  11. Marcon A, Melkote SN, Castle J, et al. 2016. Effect of jet velocity in co-flow water cavitation jet peening. Wear, 360–361:38–50.  https://doi.org/10.1016/j.wear.2016.03.027 CrossRefGoogle Scholar
  12. Tong ZM, Li Y, Westerdahl D, et al. 2019a. Exploring the effects of ventilation practices in mitigating in-vehicle exposure to traffic-related air pollutants in China. Environment International, 127: 773–784.  https://doi.org/10.1016/j.envint.2019.03.023 CrossRefGoogle Scholar
  13. Tong ZM, Cheng ZW, Tong SG, 2019b. Preliminary design of multistage radial turbines based on rotor loss characteristics under variable operating conditions. Energies, 12(13): 2550.  https://doi.org/10.3390/en12132550 CrossRefGoogle Scholar
  14. Yamaguchi A, Shimizu S, 1987. Erosion due to impingement of cavitating jet. Journal of Fluids Engineering, 109(4): 442–447.  https://doi.org/10.1115/1.3242686 CrossRefGoogle Scholar
  15. Zhang JH, Wang D, Xu B, et al. 2018. Experimental and numerical investigation of flow forces in a seat valve using a damping sleeve with orifices. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(6):417–430.  https://doi.org/10.1631/jzus.A1700164 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhouChina
  2. 2.School of Mechanical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations