Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 20, Issue 11, pp 852–863 | Cite as

An adjoint-based optimization method for reducing the axial force of a reactor coolant pump

  • Jia-ming Wang
  • Peng-fei WangEmail author
  • Xu Zhang
  • Xiao-dong Ruan
  • Xin Fu
Article
  • 24 Downloads

Abstract

To alleviate the wear of a thrust bearing in a reactor coolant pump (RCP) while ensuring the hydraulic performance of the pump, an adjoint-based optimization method is proposed in this study. This method reduces the axial force of the RCP impeller and synchronously improves the impeller’s hydraulic efficiency. By combining the adjoint solution with the radial basis function (RBF)-based mesh deformation, the optimization proceeds along the gradient direction, which greatly reduces the time and cost of the calculation. In the adjoint method, the adjoint equations in the rotating coordinate system are established, a joint objective function of the head constraint, hydraulic efficiency, and axial force is expressed, and then the blade surface sensitivity to the joint objective function is determined. In the RBF mesh deformation, the control points on the blade strand are evenly spaced, which ensures the smoothness of the deformed 3D twisted blade. Using the proposed optimization method, the hydraulic axial force of the impeller is reduced by approximately 3.8%, while the hydraulic efficiency of a scaled RCP impeller is increased by approximately 3.2%, and the head remains at an almost constant value. The obtained results validate the feasibility of the adjoint method for optimizing the design of centrifugal pumps.

Key words

Reactor coolant pump (RCP) Adjoint method Radial basis function (RBF) Axial force Shape optimization 

基于伴随求解的核主泵轴向力优化方法

概要

目的:核主泵轴向力过大容易造成水润滑轴承磨损,因 此在保证扬程和效率性能的同时需要降低核主 泵轴向力。本文旨在建立目标性能与叶轮几何形 状的函数关系,探究基于伴随求解的扭曲叶轮的 变形方案,在保证扬程不变的条件下同步优化叶 轮的轴向力和效率,并找到影响该综合性能的叶 轮关键区域。

创新点:1. 提出一种同步改进多个目标性能的叶轮形状优 化方法;2. 将伴随求解和径向基函数网格变形相 结合以实现核主泵叶轮三维曲面优化。

方法:1. 通过理论分析,建立基于径向基函数网格变形 的伴随优化方法,并在开源平台编写迭代程序; 2. 通过公式推导,构建扬程、效率和轴向力对应 的目标函数(公式(19)~(21)),并运用正交 实验确定各个目标函数的参数因子;3. 通过迭代 计算,在保证扬程不变的条件下实现轴向力和效 率的同步优化,确定影响该综合性能的关键区域 (图8),并获得叶轮的改进设计方案;4. 通过流 场分析,对比改进前后流场内部的压力和流速分 布情况(图9 和10),并验证改进方案的可行性 和有效性。

结论:1. 与传统的随机算法相比,该优化方法直接沿梯 度方向进行迭代优化,可以避免使用大量样本数 据来寻找优化路径;2. 该优化方法将伴随求解和 径向基函数网格变形相结合,实现了流场计算和 结构变形的自动化,可以保证流场网格光滑高效 地更迭;3. 叶轮靠近出口边的下半部分是同步优 化核主泵轴向力和效率的关键区域。

CLC number

TH313 

关键词

核主泵 伴随方法 径向基函数 轴向力 形状优化 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. Derakhshan, S, Pourmahdavi, M, Abdolahnejad, E, et al., 2013. Numerical shape optimization of a centrifugal pump impeller using artificial bee colony algorithm. Computers & Fluids, 81: 145–151. https://doi.org/10.1016/j.compfluid.2013.04.018 CrossRefGoogle Scholar
  2. Dong, W, Chu, W., 2015. Influence of balance hole diameter on performance and balance chamber pressure of centrifugal pump. Transactions of the Chinese Society for Agricultural Machinery, 46(6): 73–77 (in Chinese). https://doi.org/10.6041/j.issn.1000-1298.2015.06.011 Google Scholar
  3. Du, YY, Liu, L, Liu, G, et al., 2016. Study of axial force on impeller of mixed-flow pump by unsteady large eddy simulation. Fluid Machinery, 44(11): 15–19 (in Chinese). https://doi.org/10.3969/j.issn.1005-0329.2016.11.004 Google Scholar
  4. Dwight, RP, Brezillon J, 2006. Effect of approximations of the discrete adjoint on gradient-based optimization. AIAA Journal, 44(12): 3022–3031. https://doi.org/10.2514/1.21744 CrossRefGoogle Scholar
  5. ESI-OpenCF, 2007. OpenFOAM: the Open Source CFD Toolbox. OpenCFD Ltd, Bracknell, UK. https://www.openfoam.com/ Google Scholar
  6. Gao, H, Ga, F, Zhao, XC, et al., 2013. Analysis of reactor coolant pump transient performance in primary coolant system during start-up period. Annals of Nuclear Energy, 54(54):202–208. https://doi.org/10.1016/j.anucene.2012.11.020 CrossRefGoogle Scholar
  7. Gülich, J., 2014. Centrifugal Pumps, 3rd Edition. Springer, Berlin, Germany, p.495–505.Google Scholar
  8. Hsin, CY, Chen, KC, Tzeng, YW, et al., 2010. Application of the adjoint method to the propeller designs. Journal of Hydrodynamics, 22(S1):484–489. https://doi.org/10.1016/S1001-6058(09)60243-2 CrossRefGoogle Scholar
  9. Jameson A, 1988. Aerodynamic design via control theory. Journal of Scientific Computing, 3(3): 233–260. https://doi.org/10.1007/BF01061285 MathSciNetCrossRefGoogle Scholar
  10. Kong, FY, Gao, CL, Zhang, XF, et al., 2009. Computation and experiment for axial force balance of canned motor pump PBN65-40-250. Transactions of the Chinese Society of Agricultural Engineering, 25(5): 68–72 (in Chinese). https://doi.org/10.3969/j.issn.1002-6819.2009.05.12 Google Scholar
  11. Li, MQ, Wang, WG, Li, CX, et al., 2016. Study on wear debris in water lubricated thrust bearing of nuclear main pump after rig test. Lubrication Engineering, 41(9):113–120 (in Chinese). https://doi.org/10.3969/j.issn.0254-0150.2016.09.021 Google Scholar
  12. Li, W, Shi, WD, Jiang, XP, et al., 2012. New method for axial force balance of canned motor pump. Transactions of the Chinese Society of Agricultural Engineering, 28(7):86–90 (in Chinese). https://doi.org/10.3969/j.issn.1002-6819.2012.07.015 Google Scholar
  13. Li, YC, Feng, Z., 2007. Aerodynamic design of turbine blades by using adjoint-based method and NS equation. ASME Turbo Expo: Power for Land, Sea, and Air, p.1371–1378. https://doi.org/10.1115/GT2007-27734 Google Scholar
  14. Liu, W, Duan, R, Chen, C, et al., 2015. Inverse design of the thermal environment in an airliner cabin by use of the CFD-based adjoint method. Energy and Buildings, 104: 147–155. https://doi.org/10.1016/j.enbuild.2015.07.011 CrossRefGoogle Scholar
  15. Lotz, J, Naumann, U, Hannemann-Taḿas, R, et al., 2015. Higher-order discrete adjoint ODE solver in C++ for dynamic optimization. Procedia Computer Science, 51: 256–265. https://doi.org/10.1016/j.procs.2015.05.237 CrossRefGoogle Scholar
  16. Othmer D, 2008. A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. International Journal for Numerical Methods in Fluids, 58(8):861–877. https://doi.org/10.1002/fld.1770 MathSciNetCrossRefGoogle Scholar
  17. Othmer C, 2014. Adjoint methods for car aerodynamics. Journal of Mathematics in Industry, 4(1):6. https://doi.org/10.1186/2190-5983-4-6
  18. Othmer, C, de Villiers, E, Weller, H., 2007. Implementation of a continuous adjoint for topology optimization of ducted flows. Proceedings of the 18th AIAA Computational Fluid Dynamics Conference, p.3947–3954. https://doi.org/10.2514/6.2007-3947 Google Scholar
  19. Papoutsis-Kiachagias, EM, Giannakoglou, K., 2016. Continuous adjoint methods for turbulent flows, applied to shape and topology optimization: industrial applications. Archives of Computational Methods in Engineering, 23(2): 255–299. https://doi.org/10.1007/s11831-014-9141-9 MathSciNetCrossRefGoogle Scholar
  20. Papoutsis-Kiachagias, EM, Kyriacou, SA, Giannakoglou, K., 2014. The continuous adjoint method for the design of hydraulic turbomachines. Computer Methods in Applied Mechanics and Engineering, 278:621-639. https://doi.org/10.1016/j.cma.2014.05.018 MathSciNetCrossRefGoogle Scholar
  21. Poirier, V, Nadarajah S, 2012. Efficient RBF mesh deformation within an adjoint-based aerodynamic optimization framework. Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p.59. https://doi.org/10.2514/6.2012-59 Google Scholar
  22. Rahim, FC, Yousefi, P, Aliakbari E, 2012. Simulation of the AP1000 reactor containment pressurization during loss of coolant accident. Progress in Nuclear Energy, 60:129–134. https://doi.org/10.1016/j.pnucene.2012.05.009 CrossRefGoogle Scholar
  23. Rao, ZQ, Yang, C., 2017. Numerical prediction of effective wake field for a submarine based on a hybrid approach and an RBF interpolation. Journal of Hydrodynamics, 29(4):691–701. https://doi.org/10.1016/S1001-6058(16)60781-3 CrossRefGoogle Scholar
  24. Rendall TCS, Allen, C., 2009. Efficient mesh motion using radial basis functions with data reduction algorithms. Journal of Computational Physics, 228(17):6231–6249. https://doi.org/10.1016/j.jcp.2009.05.013 CrossRefGoogle Scholar
  25. Robinson, TT, Armstrong, CG, Chua, HS, et al., 2012. Optimizing parameterized CAD geometries using sensitivities based on adjoint functions. Computer-Aided Design and Applications, 9(3):253–268. https://doi.org/10.3722/cadaps.2012.253-268 CrossRefGoogle Scholar
  26. Si, ZB, Wang, G, Guo, Y., 2012. Analysis on thrust watts stress field of water lubrication thrust bearing. Lubrication Engineering, 37(6):57–59 (in Chinese). https://doi.org/10.3969/j.issn.0254-0150.2012.06.013 Google Scholar
  27. Su, SZ, Wang, PF, Xu, ZB, et al., 2017. Study on maximum speed setting standard during speed up process of reactor coolant pump. Nuclear Power Engineering, 38(5):101–105. https://doi.org/10.13832/j.jnpe.2017.05.0101 Google Scholar
  28. Tammisola, O, Juniper, M., 2015. Adjoint sensitivity analysis of hydrodynamic stability in a gas turbine fuel injector. ASME Turbo Expo: Turbine Technical Conference and Exposition, p.1–10. https://doi.org/10.1115/GT2015-42736 Google Scholar
  29. Zhang, JY, Zhu, HW, Chun, Y, et al., 2011. Multi-objective shape optimization of helico-axial multiphase pump impeller based on NSGA-II and ANN. Energy Conversion and Management, 52(1):538–546. https://doi.org/10.1016/j.enconman.2010.07.029 CrossRefGoogle Scholar
  30. Zhou, F, 2017. Research on the Hydraulic Design of Canned Nuclear Coolant Pump with High Efficiency, Low Axial Force and Low Hydraulic Pulsation. PhD Thesis, Dalian University of Technology, Dalian, China (in Chinese).Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Fluid Power & Mechatronic SystemsZhejiang UniversityHangzhouChina
  2. 2.School of EngineeringZhejiang University City CollegeHangzhouChina

Personalised recommendations