Skip to main content
Log in

Local loss model of dividing flow in a bifurcate tunnel with a small angle

小夹角分叉隧道分流局部损失模型

  • Published:
Journal of Zhejiang University SCIENCE A Aims and scope Submit manuscript

Abstract

To provide a theoretical basis for the flow diversion control of a bifurcate tunnel, the flow separation characteristics and local loss model at the tunnel bifurcation were analyzed by combining numerical simulation and theoretical derivation. The results showed that the sudden change of boundaries interrupts uniform flow when air flows through a tunnel bifurcation, causing changes in flow velocity and direction. When the diversion ratio β is small, the flow is separated on the downstream mainline tunnel sidewall close to the bifurcation point and the ramp sidewall away from bifurcation point; when β is large, the flow is separated on the downstream mainline sidewall away from bifurcation point and the ramp sidewall close to bifurcation point. The local loss on flow division is caused mainly by velocity gradient changes and flow deflection and separation. When the air flux ratio q of the downstream mainline tunnel to that of the ramp is equal to their cross-sectional area ratio ϕ, local loss coefficients are at their minimum; when q>ϕ, the loss coefficients decrease with the increase of β, but the loss coefficient for the ramp increases as the bifurcation angle rises. When q<ϕ, the loss coefficients increase with the increase of β, but the loss coefficient for the ramp declines as the bifurcation angle rises. Finally, a theoretical formula to predict the dividing flow local loss coefficient of a bifurcate tunnel is established based on the airflow deflection angle assumption. The proposed model has a higher precision in prediction than other formulas.

中文概要

目的

掌握分叉隧道的空气流动特征与阻力损失特性是 进行分叉隧道通风设计和控制的关键。本文旨在 探讨小角度分叉结构中的流动特征及局部损失 机制,并基于流动分离机制构建可供设计使用的 分叉隧道分流局部损失系数的理论公式。

创新点

1. 揭示气流在小角度分叉结构中的流动分离特征 及损失机制;2. 提出流向偏转角假设,建立可供 设计使用的分叉隧道分流局部损失预测模型。

方法

1. 通过数值模拟,获得隧道分叉处的流动特征(图 5、6a 和6d),以及分流局部损失系数随分流比及 夹角的变化规律(图6b 和6c);2. 通过理论推导, 构建小夹角分叉结构的分流局部损失系数预测公 式(公式(18)和(21));3. 通过现场实测,验 证预测公式的可靠性(图15)。

结论

1. 空气在隧道分叉处的分流将导致流速和流向的 变化;当分流比β 较小时,流动分离出现在靠近 分叉点一侧的主线边壁和远离分叉点一侧的匝 道边壁;当β 较大时,流动分离出现在远离分叉 点一侧的主线边壁和靠近分叉点一侧的匝道边 壁。 2. 当分流后主线与匝道的流量比q 等于两者 的面积比ϕ 时,主线及匝道的分流局部损失系数 ξ12 和ξ13 最小;当q>ϕ 时,ξ12 和ξ13 均随β 的增大 而减小,且ξ13 随着θ 的增大而增大;当q<ϕ 时, ξ12 和ξ13 均随β 的增大而增大,且ξ13 随着θ 的增 大而减小。3. 基于隧道分叉处的流动分离机制, 提出了空气流向偏转角假设,构建了可用于预测 分叉隧道分流局部损失系数的理论公式,与已有 文献公式相比,具有更好的预测精度。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdulwahhab M, Injeti NK, Dakhi SF, 2013. Numerical prediction of pressure loss of fluid in a T–junction. International Journal of Energy and Environment, 4(2): 253–264.

    Google Scholar 

  • Bassett MD, Winterbone DE, Pearson RJ, 2001. Calculation of steady flow pressure loss coefficients for pipe junctions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 215(8): 861–881. https://doi.org/10.1177/095440620121500801

    Google Scholar 

  • Costa NP, Maia R, Proenca MF, et al., 2006. Edge effects on the flow characteristics in a 90deg tee junction. Journal of Fluids Engineering, 128(6): 1204–1217. https://doi.org/10.1115/1.2354524

    Google Scholar 

  • Du T, Yang D, Peng SN, et al., 2015. A method for design of smoke control of urban traffic link tunnel (UTLT) using longitudinal ventilation. Tunnelling and Underground Space Technology, 48:35–42. https://doi.org/10.1016/j.tust.2015.02.001

    Google Scholar 

  • Ghostine R, Vazquez J, Terfous A, et al., 2013. A comparative study of 1D and 2D approaches for simulating flows at right angled dividing junctions. Applied Mathematics and Computation, 219(10): 5070–5082 https://doi.org/10.1016/j.amc.2012.11.048

    Google Scholar 

  • Hager WH, 1984. An approximate treatment of flow in branches and bends. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 198(4): 63–69. https://doi.org/10.1243/PIME_PROC_1984_198_088_02

    Google Scholar 

  • Hager WH, 2010. Losses in flow. Wastewater Hydraulics: Theory and Practice. Springer, Berlin, Heidelberg, p.17–54. https://doi.org/10.1007/978–3–642–11383–3_2

    Google Scholar 

  • Hong SW, Exadaktylos V, Lee IB, et al., 2017. Validation of an open source CFD code to simulate natural ventilation for agricultural buildings. Computers and Electronics in Agriculture, 138:80–91. https://doi.org/10.1016/j.compag.2017.03.022

    Google Scholar 

  • Idelchik IE, Steinberg MO, Malyavskaya GR, et al., 2008. Handbook of Hydraulic Resistance. Laurier Books Ltd., New York, USA, p.413–501.

    Google Scholar 

  • Ito H, Imai K, 1973. Energy losses at 90° pipe junctions. Journal of the Hydraulics Division, 99(9): 1353–1368.

    Google Scholar 

  • Iwanami S, Tetsuo S, Hiroshi K, 2008. Study on flow characteristics in right–angled pipe fittings: 1st report, on case of water flow. Transactions of the Japan Society of Mechanical Engineers, 35(269): 97–106.

    Google Scholar 

  • Li JM, Liu SS, Li YF, et al., 2012. Experimental study of smoke spread in titled urban traffic tunnels fires. Procedia Engineering, 45:690–694. https://doi.org/10.1016/j.proeng.2012.08.224

    Google Scholar 

  • Li L, Li YL, Huang JT, et al.,2001. Numerical simulation and experimental study on water flow in Y–type tube. Journal of Hydraulic Engineering, (3): 49–53 (in Chinese). https://doi.org/10.3321/j.issn:0559–9350.2001.03.010

    Google Scholar 

  • Li Q, Chen C, Deng YW, et al., 2015. Influence of traffic force on pollutant dispersion of CO, NO and particle matter (PM2.5) measured in an urban tunnel in Changsha, China. Tunnelling and Underground Space Technology, 49:400–407. https://doi.org/10.1016/j.tust.2015.04.019

    Google Scholar 

  • Liao L, Yan L, Huang W, et al., 2018. Mode transition process in a typical strut–based scramjet combustor based on a parametric study. Journal of Zhejiang University–SCIENCE A (Applied Physics & Engineering), 19(6): 431–451. https://doi.org/10.1631/jzus.A1700617

    Google Scholar 

  • Lin GH, Ferng YM, 2016. Investigating thermal mixing and reverse flow characteristics in a T–junction using CFD methodology. Applied Thermal Engineering, 102:733–741. https://doi.org/10.1016/j.applthermaleng.2016.03.124

    Google Scholar 

  • Lukiyanto YB, Wardana ING, Wijayanti W, et al., 2016. Secondary flow behaviour in various rounded–edge bifurcation T–Junctions and its relation to head loss. International Journal of Fluid Mechanics Research, 43(3): 206–217. https://doi.org/10.1615/InterJFluidMechRes.v43.i3.20

    Google Scholar 

  • Mangani L, Buchmayr M, Darwish M, 2014. Development of a novel fully coupled solver in OpenFOAM: steady–state incompressible turbulent flows. Numerical Heat Transfer, Part B: Fundamentals, 66(1): 1–20. https://doi.org/10.1080/10407790.2014.894448

    Google Scholar 

  • Matthew GD, 1975. Simple approximate treatments of certain incompressible duct flow problems involving separation. Journal of Mechanical Engineering Science, 17(2): 57–64. https://doi.org/10.1243/JMES_JOUR_1975_017_011_02

    Google Scholar 

  • McKeon BJ, Li J, Jiang W, et al., 2004. Further observations on the mean velocity distribution in fully developed pipe flow. Journal of Fluid Mechanics, 501:135–147. https://doi.org/10.1017/S0022112003007304.

    Google Scholar 

  • Meng Q, Qu XB, Wang XC, et al., 2011. Quantitative risk assessment modeling for nonhomogeneous urban road tunnels. Risk Analysis, 31(3): 382–403. https://doi.org/10.1111/j.1539–6924.2010.01503.x

    Google Scholar 

  • Mignot E, Zeng C, Dominguez G, et al., 2013. Impact of topographic obstacles on the discharge distribution in open–channel bifurcations. Journal of Hydrology, 494: 10–19. https://doi.org/10.1016/j.jhydrol.2013.04.023

    Google Scholar 

  • Miller DS, 1971. Internal Flow: a Guide to Losses in Pipe and Duct Systems. British Hydromechanics Research Association, Cranfield, UK, p.303–360.

    Google Scholar 

  • Mohamed MS, Larue JC, 1990. The decay power law in grid–generated turbulence. Journal of Fluid Mechanics, 219:195–214. https://doi.org/10.1017/S0022112090002919

    Google Scholar 

  • Momplot A, Kouyi GL, Mignot E, et al., 2017. Typology of the flow structures in dividing open channel flows. Journal of Hydraulic Research, 55(1): 63–71. https://doi.org/10.1080/00221686.2016.1212409

    Google Scholar 

  • MOT (Ministry of Transport of the People’s Republic of China, 2018. Design Specification for Highway Alignment, JTG D20–2017. MOT (in Chinese).

    Google Scholar 

  • Nan CZ, Ma JM, Luo Z, et al., 2015. Numerical study on the mean velocity distribution law of air backflow and the effective interaction length of airflow in forced ventilated tunnels. Tunnelling and Underground Space Technology, 46:104–110. https://doi.org/10.1016/j.tust.2014.11.006

    Google Scholar 

  • Nazif HR, Tabrizi HB, 2011. Comparison of standard turbulent wall function with a non–equilibrium wall model. International Journal of Fluid Mechanics Research, 38(6): 499–508. https://doi.org/10.1615/InterJFluidMechRes.v38.i6.30

    Google Scholar 

  • Oka K, Ito H, 2005. Energy losses at tees with large area ratios. Journal of Fluids Engineering, 127(1): 110–116. https://doi.org/10.1115/1.1852475

    Google Scholar 

  • Reynolds O, 1895. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London. A, 186:123–164. https://doi.org/10.1098/rsta.1895.0004

    Google Scholar 

  • Shi X, Lü HX, Zhu DL, et al., 2013. Flow resistance and characteristics of PVC tee pipes. Transactions of the Chinese Society for Agricultural Machinery, 44(1): 73–79 (in Chinese). https://doi.org/10.6041/j.issn.1000–1298.2013.01.015

    Google Scholar 

  • Shih TH, Zhu J, Lumley JL, 1994. A new Reynolds stress algebraic equation model. Computer Methods in Applied Mechanics and Engineering, 125(1–4): 287–302. https://doi.org/10.1016/0045–7825(95)00796–4

    Google Scholar 

  • Shih TH, Liou WW, Shabbir A, et al., 1995. A new k–? eddy viscosity model for high Reynolds number turbulent flows. Computers & Fluids, 24(3): 227–238. https://doi.org/10.1016/0045–7930(94)00032–T

    Google Scholar 

  • Song Y, Li XB, Wang SH, et al., 2016. Experimental study on determination and correction method of wind speed in wind station of rectangular roadway based on LDA. Journal of Safety Science and Technology, 12(1): 169–175 (in Chinese). https://doi.org/10.11731/j.issn.1673–193x.2016.01.032

    Google Scholar 

  • Tan Z, Gao HO, 2015. Traffic control for air quality management and congestion mitigation in complex urban vehicular tunnels. Transportation Research Part C: Emerging Technologies, 58:13–28. https://doi.org/10.1016/j.trc.2015.06.004

    Google Scholar 

  • Tavoularis S, Corrsin S, 1981. Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 2. The fine structure. Journal of Fluid Mechanics, 104:349–367. https://doi.org/10.1017/S0022112081002942

    Google Scholar 

  • Versteeg HK, Malalasekera W, 1995. An Introduction to Computational Fluid Dynamics: the Finite Volume Method. Longman Scientific & Technical, New York, USA, p.66–69.

    Google Scholar 

  • Wu K, Huang ZY, Zhang JS, et al., 2017. An Urban Tunnel Ventilation Test Device with a Ramp. CN Patent 104564122B (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Wu.

Additional information

Project supported by the Natural Science Foundation of Zhejiang Province (No. LY19E080028), the Key Research and Development Project of Zhejiang Province (No. 2018C03029), and the Fundamental Research Funds for the Central Universities (No. 2017QNA4023), China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, Th., Hou, Yg. et al. Local loss model of dividing flow in a bifurcate tunnel with a small angle. J. Zhejiang Univ. - Sci. A 20, 21–35 (2019). https://doi.org/10.1631/jzus.A1800298

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1800298

Key words

CLC number

关键词

Navigation