Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 19, Issue 9, pp 719–734 | Cite as

Static analysis of a stepped main shaft in a mine hoist by means of the modified 1D higher-order theory

  • Wen-xiang Teng
  • Zhen-cai Zhu
Article

Abstract

The analysis of a stepped main shaft by 1D refined beam theories in cylindrical coordinate system is presented. High-order displacement fields are achieved by employing the Carrera unified formulation (CUF), which takes direct implementation of any-order theory without the requirement of considering special formulations. The classical beam theories can be derived from the formulation as particular cases. The principle of minimum potential energy is used to obtain the governing differential equations and the related boundary conditions in a cylindrical coordinate system. These explicit terms of the stiffness matrices are exhibited and a global stiffness matrix is then obtained by matrix transformation. For the special working condition in a mining hoist and stepped shaft, the resulting global stiffness matrix and the loading vector are modified and applied with the boundary conditions in the static analysis of shaft parts. The accuracy of static analysis based on the refined beam theory is confirmed by comparing ANSYS solid theory and classical beam theories. An experiment for verifying the availability of the modified 1D refined beam model on the surface strain of segment 9 of the main shaft is conducted in a field experiment at Zhaojiazhai Coal Mine, China. Experimental results demonstrate the practicability of the present theory in predicting the strain field on the surface of the stepped main shaft of a mining hoist.

Key words

Carrera unified formulation (CUF) 1D higher-order theory Finite element method Strain field Stepped main shaft Main hoist 

基于一维高阶理论的矿井提升机阶梯主轴静力分析

摘要

目 的

研究基于 Carrera 通用表达式的一维高阶理论, 将其应用于矿井提升机主轴的力学特性分析, 针对矿井提升的特殊工况对主轴模型进行改进, 并探究该改进模型在工况监测中的可用性。

创新点

基于 Carrera 一维高阶理论, 建立提升机主轴的一维高阶模型; 根据矿井提升的特殊工况对主轴模型进行改进, 得到改进的主轴一维高阶模型。

方 法

  1. 1.

    引入基于 Carrera 通用表达式的一维高阶理论, 克服传统梁理论的局限性和三维有限元法计算经济性差等问题;

     
  2. 2.

    通过理论计算、 软件仿真和现场试验(图14 和15), 验证改进的主轴一维高阶模型的有效性和可用性。

     

结 论

  1. 1.

    基于 Carrera 通用表达式的一维高阶理论模型能够以较少的计算量得出与 ANSYS 三维实体模型相近的结果;

     
  2. 2.

    改进的提升机主轴一维高阶模型能够准确地监测矿井提升系统的工况。

     

关键词

Carrera 通用表达式 一维高阶理论 有限元法 应变场 阶梯主轴 

CLC number

TD444 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bathe KJ, 1996. Finite Element Procedure. Prentice Hall, New Jersey, USA.Google Scholar
  2. Carrera E, Giunta G, 2010. Refined beam theories based on a unified formulation. International Journal of Applied Mechanics, 2(1):117–143.  https://doi.org/10.1142/S1758825110000500 CrossRefGoogle Scholar
  3. Carrera E, Petrolo M, 2011. On the effectiveness of higherorder terms in refined beam theories. Journal of Applied Mechanics, 78(2):021013.  https://doi.org/10.1115/1.4002207 CrossRefGoogle Scholar
  4. Carrera E, Petrolo M, 2012. Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica, 47(3):537–556.  https://doi.org/10.1007/s11012-011-9466-5 MathSciNetCrossRefzbMATHGoogle Scholar
  5. Carrera E, Giunta G, Petrolo M, 2011. Beam Structures: Classical and Advanced Theories. John Wiley & Sons, Chichester, West Sussex, UK, p.188.CrossRefzbMATHGoogle Scholar
  6. Carrera E, Cinefra M, Petrolo M, et al., 2014. Finite Element Analysis of Structures through Unified Formulation. John Wiley & Sons, Chichester, West Sussex, UK, p.385.zbMATHGoogle Scholar
  7. Carrera E, Pagani A, Petrolo M, et al., 2015a. Recent developments on refined theories for beams with applications. Mechanical Engineering Reviews, 2(2):1400298.  https://doi.org/10.1299/mer.14-0029.CrossRefGoogle Scholar
  8. Carrera E, Pagani A, Petrolo M, 2015b. Refined 1D finite elements for the analysis of secondary, primary, and complete civil engineering structures. Journal of Structural Engineering, 141(4):04014123.  https://doi.org/10.1061/(ASCE)ST.1943-541X.0001076 CrossRefGoogle Scholar
  9. Chan KT, Lai KF, Stephen NG, et al., 2011. A new method to determine the shear coefficient of Timoshenko beam theory. Journal of Sound and Vibration, 330(14):3488–3497.  https://doi.org/10.1016/j.jsv.2011.02.012 CrossRefGoogle Scholar
  10. Cowper GR, 1966. The shear coefficient in Timoshenko’s beam theory. Journal of Applied Mechanics, 33(2):335–340.  https://doi.org/10.1115/1.3625046 CrossRefzbMATHGoogle Scholar
  11. Dhillon BS, 2010. Mine Safety: a Modern Approach. Springer–Verlag London Limited, London, UK, p.192.CrossRefGoogle Scholar
  12. Euler L, 1744. De Curvis Elasticis. Bousquet, Geneva, Switzerland.Google Scholar
  13. Filippi M, Pagani A, Petrolo M, et al., 2015. Static and free vibration analysis of laminated beams by refined theory based on Chebyshev polynomials. Composite Structures, 132:1248–1259.  https://doi.org/10.1016/j.compstruct.2015.07.014 CrossRefGoogle Scholar
  14. Friedman Z, Kosmatka JB, 1993. An improved two–node Timoshenko beam finite element. Computers & Structures, 47(3):473–481.  https://doi.org/10.1016/0045-7949(93)90243-7 CrossRefzbMATHGoogle Scholar
  15. Gao XL, 2015. A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mechanica, 226(2):457–474.  https://doi.org/10.1007/s00707-014-1189-y MathSciNetCrossRefzbMATHGoogle Scholar
  16. Gruttmann F, Wagner W, 2001. Shear correction factors in Timoshenko’s beam theory for arbitrary shaped crosssections. Computational Mechanics, 27(3):199–207.  https://doi.org/10.1007/s004660100239 CrossRefzbMATHGoogle Scholar
  17. Hutchinson JR, 2001. Shear coefficients for Timoshenko beam theory. Journal of Applied Mechanics, 68(1):87–92.  https://doi.org/10.1115/1.1349417 CrossRefzbMATHGoogle Scholar
  18. Jensen JJ, 1983. On the shear coefficient in Timoshenko’s beam theory. Journal of Sound and Vibration, 87(4):621–635.  https://doi.org/10.1016/0022-460X(83)90511-4 CrossRefzbMATHGoogle Scholar
  19. Pagani A, Boscolo M, Banerjee JR, et al., 2013. Exact dynamic stiffness elements based on one–dimensional higher–order theories for free vibration analysis of solid and thinwalled structures. Journal of Sound and Vibration, 332(23):6104–6127.  https://doi.org/10.1016/j.jsv.2013.06.023 CrossRefGoogle Scholar
  20. Pagani A, Petrolo M, Colonna G, et al., 2015. Dynamic response of aerospace structures by means of refined beam theories. Aerospace Science and Technology, 46:360–373.  https://doi.org/10.1016/j.ast.2015.08.005 CrossRefGoogle Scholar
  21. Pagani A, de Miguel AG, Petrolo M, et al., 2016. Analysis of laminated beams via Unified Formulation and Legendre polynomial expansions. Composite Structures, 156:78–92.  https://doi.org/10.1016/j.compstruct.2016.01.095 CrossRefGoogle Scholar
  22. Stephen NG, Levinson M, 1979. A second order beam theory. Journal of Sound and Vibration, 67(3):293–305.  https://doi.org/10.1016/0022-460X(79)90537-6 CrossRefzbMATHGoogle Scholar
  23. Tetsuo I, 1990. Timoshenko beam theory with extension effect and its stiffness equation for finite rotation. Computers & Structures, 34(2):239–250.  https://doi.org/10.1016/0045-7949(90)90367-B CrossRefzbMATHGoogle Scholar
  24. Timoshenko SP, 1921. LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(245):744–746.  https://doi.org/10.1080/14786442108636264 Google Scholar
  25. Timoshenko SP, 1922. X. On the transverse vibrations of bars of uniform cross–section. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 43(253):125–131.  https://doi.org/10.1080/14786442208633855 CrossRefGoogle Scholar
  26. Vo TP, Thai HT, 2012. Static behavior of composite beams using various refined shear deformation theories. Composite Structures, 94(8):2513–2522.  https://doi.org/10.1016/j.compstruct.2012.02.010 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical and Electrical EngineeringChina University of Mining and TechnologyXuzhouChina
  2. 2.Jiangsu Key Laboratory of Mine Mechanical and Electrical EquipmentChina University of Mining and TechnologyXuzhouChina

Personalised recommendations