Journal of Zhejiang University-SCIENCE A

, Volume 19, Issue 9, pp 704–718

# Active control experiments on a herringbone ribbed cable dome

• Xiao-tian Liang
• Xing-fei Yuan
• Shi-lin Dong
Article

## Abstract

Active control experiments on a newly proposed herringbone ribbed cable dome are described in this study. The cables of the dome are designed to have the ability to change length in order to adjust the geometrical configuration and the force distribution of the structure. Thereby, the dome is adaptable to different load cases. To begin with, for achieving the control amount for the active control test, an active control algorithm based on a nonlinear force method is presented. Then, an assembly and pre-stressing procedure is implemented. Active adjustment tests on three possible types of adjustable cables are performed to provide a practical method for the following active control test. The active control test demonstrates the applicability of the active control algorithm to achieve both force control and shape control. The method can be used to prevent failure of the cable domes due to slackening of the ridge cables and excessive displacements of the central section of the cable dome. The experiments verify the proposed control algorithm and the feasibility of the cable dome to adapt to excessive full span load and maintain the integrity of the structure.

## Key words

Herringbone ribbed cable dome Active control Nonlinear force method Force control Shape control

# 肋环人字型索穹顶主动控制试验研究

## 摘要

### 创新点

1. 1.

提出通过改变索杆张力结构的形状来提高结构承载性能的方法, 并基于非线性力法提出索杆张力结构形状控制和内力控制的计算模型。

2. 2.

设计具有长度可调拉索单元的肋环人字型索穹顶模 型进行主动控制试验研究, 并将结构响应的试验结果与理论计算结果进行对比。

### 方 法

1. 1.

以结构形状和杆件内力为控制目标建立求解主动单元调控量的计算模型, 编制计算程序进行主动单元调控量的计算;

2. 2.

通过对具有拉索长度可调单元的肋环人字型索穹顶进行模型试验研究, 考察结构主动调控过程和主动控制过程的结构响应情况。

### 结 论

1. 1.

基于非线性力法推导索杆张力结构的结构响应计算公式, 推导结果可应用于结构主动控制的计算中;

2. 2.

对具有拉索长度可调单元的肋环人字型索穹顶进行模型试验研究, 结果表明利用本文提出的理论方法得到的控制方案可达到所设定的结构控制目;

3. 3.

试验值与理论计算值数据吻合良好, 验证本文理论计算模型的正确性和应用于实际结构的可行性。

TU394

## Preview

Unable to display preview. Download preview PDF.

## References

1. Adam B, Smith IF, 2007. Self–diagnosis and self–repair of an active tensegrity structure. Journal of Structural Engineering, 133(12):1752–1761.
2. Adam B, Smith IFC, 2008. Active tensegrity: a control framework for an adaptive civil–engineering structure. Computers & Structures, 86(23–24):2215–2223.
3. Chen LM, Dong SL, 2011. Dynamical characteristics research on cable dome. Advanced Materials Research, 163–167: 3882–3886. Google Scholar
4. Djouadi S, Motro R, Pons JC, et al., 1998. Active control of tensegrity systems. Journal of Aerospace Engineering, 11(2):37–44.
5. Dong SL, Liang HQ, 2014. Mechanical characteristics and analysis of prestressing force distribution of herringbone ribbed cable dome. Journal of Building Structures, 35(6):102–108 (in Chinese). Google Scholar
6. Fest E, Shea K, Domer B, et al., 2003. Adjustable tensegrity structures. Journal of Structural Engineering, 129(4): 515–526.
7. Fest E, Shea K, Smith IFC, 2004. Active tensegrity structure. Journal of Structural Engineering, 130(10):1454–1465.
8. Fuller RB, 1962. Tensile–integrity Structures. US Patent 3063521.Google Scholar
9. Geiger DH, Stenfaniuk A, Chen D, 1986. The design and construction of two cable domes for the Korean Olympics. Proceedings of the IASS Symposium on Shells, Membranes and Space Frames, p.265–272.Google Scholar
10. Guo JM, Zhu ML, 2016. Negative Gaussian curvature cable dome and its feasible prestress design. Journal of Aerospace Engineering, 29(3):04015077.
11. Kim SD, Sin IA, 2014. A comparative analysis of dynamic instability characteristic of Geiger–typed cable dome structures by load condition. Journal of the Korean Association for Spatial Structures, 14(1):85–91.
12. Kmet S, Mojdis M, 2015. Adaptive cable dome. Journal of Structural Engineering, 141(9):04014225.
13. Korkmaz S, Ali NBH, Smith IFC, 2012. Configuration of control system for damage tolerance of a tensegrity bridge. Advanced Engineering Informatics, 26(1):145–155.
14. Levy MP, 1994. The Georgia dome and beyond: achieving lightweight–longspan structures. Spatial, Lattice and Tension Structures: Proceedings of the IASS–ASCE International Symposium, p.560–562.Google Scholar
15. Li KN, Huang DH, 2011. Static behavior of Kiewitt6 suspendome. Structural Engineering and Mechanics, 37(3): 309–320. Google Scholar
16. Luo YZ, Lu JY, 2006. Geometrically non–linear force method for assemblies with infinitesimal mechanisms. Computers & Structures, 84(31–32):2194–2199.
17. Oppenheim IJ, Williams WO, 1997. Tensegrity prisms as adaptive structures. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, p.113–120.Google Scholar
18. Pellegrino S, 1990. Analysis of prestressed mechanisms. International Journal of Solids and Structures, 26(12): 1329–1350. Google Scholar
19. Pellegrino S, Calladine CR, 1986. Matrix analysis of statically and kinematically indeterminate frameworks. International Journal of Solids and Structures, 22(4):409–428.
20. Pellegrino S, Kwan ASK, van Heerden TF, 1992. Reduction of equilibrium, compatibility and flexibility matrices, in the force method. International Journal for Numerical Methods in Engineering, 35(6):1219–1236.
21. Skelton RE, de Oliveira MC, 2009. Tensegrity Systems. Springer, Boston, MA, USA.Google Scholar
22. Soong TT, Manolis GD, 1987. Active structures. Journal of Structural Engineering, 113(11):2290–2302.
23. Tang JM, Shen ZY, 1998. The analysis of static mechanical properties for cable domes. Spatial Structures, 4(3):17–25. Google Scholar
24. van de Wijdeven J, de Jager B, 2005. Shape change of tensegrity structures: design and control. American Control Conference, p.2522–2527. Google Scholar
25. Wang ZH, Yuan XF, Dong SL, 2010. Simple approach for force finding analysis of circular Geiger domes with consideration of self–weight. Journal of Constructional Steel Research, 66(2):317–322.
26. Wei DM, Li D, Liu YQ, 2015. Dominant modals of wind–induced vibration response for spherical Kiewitt cable dome. Advanced Materials Research, 1065–1069: 1156–1159. Google Scholar
27. Xi Y, Xi Z, Qin WH, 2011. Form–finding of cable domes by simplified force density method. Proceedings of the Institution of Civil Engineers–Structures and Buildings, 164(3):181–195.
28. Xu X, Luo Y, 2009. Non–linear displacement control of prestressed cable structures. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 223(7):1001–1007.
29. You Z, 1997. Displacement control of prestressed structures. Computer Methods in Applied Mechanics and Engineering, 144(1–2):51–59.
30. Yuan XF, Dong SU, 2002. Nonlinear analysis and optimum design of cable domes. Engineering Structures, 24(7): 965–977.
31. Zhang LM, Chen WJ, Dong SL, 2014. Natural vibration and wind–induced response analysis of the non–fully symmetric Geiger cable dome. Journal of Vibroengineering, 16(1):31–41.Google Scholar
32. Zhu ML, Dong SL, Yuan XF, 2013. Failure analysis of a cable dome due to cable slack or rupture. Advances in Structural Engineering, 16(2):259–271.

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

## Authors and Affiliations

• Xiao-tian Liang
• 1
• Xing-fei Yuan
• 1
• Shi-lin Dong
• 1
1. 1.Space Structures Research CenterZhejiang UniversityHangzhouChina