Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 19, Issue 9, pp 663–675 | Cite as

Engineered metabarrier as shield from longitudinal waves: band gap properties and optimization mechanisms

  • Xi Sheng
  • Cai-you Zhao
  • Qiang Yi
  • Ping Wang
  • Meng-ting Xing
Article

Abstract

Phononic crystals that prevent the propagation of waves in a band gap have been widely applied in wave propagation control. In this paper, we propose the use of a metabarrier, based on a locally resonant phononic crystal mechanism, as a floating-slab track bearing to shield the infrastructure in a floating-slab track system from longitudinal waves from the slab, thereby improving mitigation of ground-borne vibrations. The locally resonant band gap properties of the metabarrier were studied based on the finite element method, and the shielding performance was verified by the transmission spectrum. Simplified models for band gap boundary frequencies were built according to the wave modes. Furthermore, a 3D half-track model was built to investigate the overall vibration mitigation performance of the floating-slab track with the metabarrier. An optimization mechanism for the band gap boundary frequencies is proposed. As the low-frequency ground-borne vibrations induced by subways carry the most energy, multi-objective genetic algorithm optimization was conducted to obtain a lower and wider band gap for a better shielding performance. The results show that the retained vibration isolation performance of the low natural frequency, the shielding performance of the band gap, and the controllability of band gap boundary frequencies all contribute to an improvement in overall vibration mitigation performance. The vertical static stiffness of the metabarrier was close to that of the existing bearing of the floating-slab track. An optimized locally resonant band gap from 50 to 113 Hz was generated using the optimization mechanism.

Key words

Metabarrier Phononic crystal Band gap Longitudinal wave Optimization mechanism 

超屏障在工程结构纵波抑制中的应用: 带隙特性及优化机理

摘要

目 的

提出一种基于局域共振带隙机理的超屏障, 并将其应用于地铁浮置板轨道结构中。 在保留现有浮置板轨道隔振效果的同时, 进一步抑制低频带隙频率范围内纵波从道床板往基底的传播。

创新点

  1. 1.

    探究超屏障导波模态, 获取其带隙频率范围, 建立带隙边界频率的简化模型;

     
  2. 2.

    建立三维半轨道模型, 分析新型浮置板轨道结构的整体减振效;

     
  3. 3.

    提出一种基于现场测试结果的超屏障带隙频率范围优化机理。

     

方 法

  1. 1.

    采用有限元法, 筛选沿轴向传播的纵波模态, 推导带隙边界频率计算公式;

     
  2. 2.

    通过计算传递谱, 研究超屏障结构的纵波抑制效果;

     
  3. 3.

    建立三维半轨道模型, 计算力传递率, 并研究采用超屏障的浮置板轨道结构的整体减振效果;

     
  4. 4.

    基于带隙边界频率计算公式, 采用多目标遗传算法, 得到超屏障关键参数的Pareto最优解集, 并依据现场测试结果选取关键参数最优解。

     

结 论

  1. 1.

    所保留的现有浮置板轨道隔振效果、 超屏障的纵波抑制效果以及带隙频率范围的可控性均有 助于提高新型浮置板轨道的整体减振效果。

     
  2. 2.

    超屏障可提供与现有浮置板轨道隔振器相近的静垂向刚度, 且该静垂向刚度与第一带隙频率范围 是相互独立的。

     
  3. 3.

    简化模型及边界频率计算公式可用于获取具有更低起始频率且更宽频率范围的带隙; 结合多目标遗传算法及现场测试结果, 选取了第一带隙为 50~113 Hz 的最优解。

     

关键词

超屏障 声子晶体 带隙 纵波 优化机理 

CLC number

U213.212 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coello CCA, 2006. Evolutionary multi–objective optimization: a historical view of the field. IEEE Computational Intelligence Magazine, 1(1):28–36.  https://doi.org/10.1109/MCI.2006.1597059 MathSciNetCrossRefGoogle Scholar
  2. Deb K, Agrawal S, Pratap A, et al., 2000. A fast elitist non–dominated sorting genetic algorithm for multiobjective optimization: NSGA–II. International Conference on Parallel Problem Solving from Nature, p.849–858.  https://doi.org/10.1007/3-540-45356-3_83 Google Scholar
  3. Ding DY, Gupta SS, Liu WN, et al., 2010. Prediction of vibrations induced by trains on line 8 of Beijing metro. Journal of Zhejiang University–SCIENCE A (Applied Physics & Engineering), 11(4):280–293.  https://doi.org/10.1631/jzus.A0900304 CrossRefzbMATHGoogle Scholar
  4. Ding DY, Liu WN, Li KF, et al., 2011. Low frequency vibration tests on a floating slab track in an underground laboratory. Journal of Zhejiang University–SCIENCE A (Applied Physics & Engineering), 12(5):345–359.  https://doi.org/10.1631/jzus.A1000276 CrossRefGoogle Scholar
  5. Eringen AC, Suhubi ES, 1975. Elastodynamics, Volume II: Linear Theory. Academic Press, New York.Google Scholar
  6. Gupta S, Degrande G, Lombaert G, 2009. Experimental validation of a numerical model for subway induced vibrations. Journal of Sound and Vibration, 321(3–5):786–812.  https://doi.org/10.1016/j.jsv.2008.10.014 CrossRefGoogle Scholar
  7. He QL, Wang JW, Chen ZG, et al., 2015. Stiffness and damping measurement of vibration isolator used for the metro floating slab. Journal of Southwest University of Science and Technology, 4:38–41 (in Chinese).  https://doi.org/10.3969/j.issn.1671-8755.2015.04.009 Google Scholar
  8. Hui CK, Ng CF, 2009. The effects of floating slab bending resonances on the vibration isolation of rail viaduct. Applied Acoustics, 70(6):830–844.  https://doi.org/10.1016/j.apacoust.2008.09.018 CrossRefGoogle Scholar
  9. Kushwaha MS, Halevi P, Dobrzynski L, et al., 1993. Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13):2022–2025.  https://doi.org/10.1103/PhysRevLett.71.2022 CrossRefGoogle Scholar
  10. Kushwaha MS, Halevi P, Martínez G, et al., 1994. Theory of acoustic band structure of periodic elastic composites. Physical Review B, 49(4):2313–2322.  https://doi.org/10.1103/PhysRevB.49.2313 CrossRefGoogle Scholar
  11. Li ZG, Wu TX, 2008. Modelling and analysis of force transmission in floating–slab track for railways. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 222(1):45–57.  https://doi.org/10.1243/09544097JRRT145 CrossRefGoogle Scholar
  12. Liu CC, Jing XJ, Chen ZB, 2016. Band stop vibration suppression using a passive X–shape structured lever–type isolation system. Mechanical Systems and Signal Processing, 68–69:342–353.  https://doi.org/10.1016/j.ymssp.2015.07.018 CrossRefGoogle Scholar
  13. Liu M, Li P, Zhong YT, et al., 2015. Research on the band gap characteristics of two–dimensional phononic crystals microcavity with local resonant structure. Shock and Vibration, 2015:239832.  https://doi.org/10.1155/2015/239832 Google Scholar
  14. Liu ZY, Zhang XX, Mao YW, et al., 2003. Locally resonant sonic materials. Science, 289(5485):1734–1736.  https://doi.org/10.1126/science.289.5485.1734 CrossRefGoogle Scholar
  15. Mead DM, 1996. Wave propagation in continuous periodic structures: research contributions from Southampton, 1964–1995. Journal of Sound and Vibration, 190(3): 495–524.  https://doi.org/10.1006/jsvi.1996.0076 CrossRefGoogle Scholar
  16. Sanayei M, Maurya P, Moore JA, 2013. Measurement of building foundation and ground–borne vibrations due to surface trains and subways. Engineering Structures, 53: 102–111.  https://doi.org/10.1016/j.engstruct.2013.03.038 CrossRefGoogle Scholar
  17. Wang P, Yi Q, Zhao CY, et al., 2017. Wave propagation in periodic track structures: band–gap behaviours and formation mechanisms. Archive of Applied Mechanics, 87(3):503–519.  https://doi.org/10.1007/s00419-016-1207-8 CrossRefGoogle Scholar
  18. Xiao XB, Li YG, Zhong TS, et al., 2017. Theoretical investigation into the effect of rail vibration dampers on the dynamical behaviour of a high–speed railway track. Journal of Zhejiang University–SCIENCE A (Applied Physics & Engineering), 18(8):631–647.  https://doi.org/10.1631/jzus.A1600697 CrossRefGoogle Scholar
  19. Yan Y, Cheng Z, Menq F, et al., 2015. Three dimensional periodic foundations for base seismic isolation. Smart Materials and Structures, 24(7):075006.  https://doi.org/10.1088/0964-1726/24/7/075006 CrossRefGoogle Scholar
  20. Yao ZJ, Yu GL, Wang YS, et al., 2010. Propagation of flexural waves in phononic crystal thin plates with linear defects. Journal of Zhejiang University–SCIENCE A (Applied Physics & Engineering), 11(10):827–834.  https://doi.org/10.1631/jzus.A1000123 CrossRefGoogle Scholar
  21. Yin J, Huang J, Zhang S, et al., 2014. Ultrawide low frequency band gap of phononic crystal in nacreous composite material. Physics Letters A, 378(32–33):2436–2442.  https://doi.org/10.1016/j.physleta.2014.06.021 CrossRefGoogle Scholar
  22. Zhao HJ, Guo HW, Gao MX, et al., 2016. Vibration band gaps in double–vibrator pillared phononic crystal plate. Journal of Applied Physics, 119(1):014903.  https://doi.org/10.1063/1.4939484 CrossRefGoogle Scholar
  23. Zheng L, Li YN, Baz A, 2011. Attenuation of wave propagation in a novel periodic structure. Journal of Central South University of Technology, 18(2):438–443.  https://doi.org/10.1007/s11771-011-0715-5 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MOE Key Laboratory of High-speed Railway EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.School of Civil EngineeringSouthwest Jiaotong UniversityChengduChina

Personalised recommendations