Journal of Zhejiang University-SCIENCE A

, Volume 12, Issue 3, pp 214–222 | Cite as

Prediction of thermal fatigue life of a turbine nozzle guide vane

Article

Abstract

Thermal fatigue (TF) is one of the most important factors that influence turbine’s life. This paper establishes a 3D solid-fluid coupling model for a steady temperature analysis of a high-pressure turbine nozzle at different turbine inlet gas total temperatures (TIGTTs). The temperature analysis supplies the temperature load for subsequent 3D finite element analysis to obtain the strain values. Following this, the prediction of the TF life is made on the basis of equivalent strain range. The results show that the strain increases with TIGTT, and the predicted TF life decreases correspondingly. This life prediction was confirmed by one TF test.

Key words

Engine Nozzle guide vane Thermal fatigue (TF) life Solid-fluid 

CLC number

V235.1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akay, H.U., Liu, Y., Rassaian, M., 2003. Simplification of finite element models for thermal fatigue life prediction of PBGA packages. Journal of Electronic Packaging, 125(3):347–353. [doi:10.1115/1.1569956]CrossRefGoogle Scholar
  2. Angelis, G. D., Palomba, F., 2004. The Reliability Improvement of a Conventional Cast Iron Exhaust Manifold for a Small Size Gasoline Engine. ASME Internal Combustion Engine Division Fall Technical Conference Long Beach, California, USA.Google Scholar
  3. Angileri, V., Bonavolontà, R., Durando, M., Garganese, M., Mariotti, G.V., 2006. FE Calculation Methodology for the Thermodynamic Fatigue Analysis of an Engine Component. ASME 8th Biennial Conference on Engineering Systems Design and Analysis Torino, Italy.Google Scholar
  4. Asayama, T., Takasho, H., Kato, T., 2009. Probabilistic prediction of crack depth distributions observed in structures subjected to thermal fatigue. Journal of Pressure Vessel Technology, 131(1):011402. [doi:10.1115/1.3027457]CrossRefGoogle Scholar
  5. Bao, S., Jin, W., Guralnick, S.A., Erber, T., 2010. Two-parameter characterization of low cycle, hysteretic fatigue data. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 11(6):449–454. [doi:10.1631/jzus.A0900763]CrossRefMATHGoogle Scholar
  6. Chamani, H., Shahangian, S.N., Jazayeri, S.A., 2007. Thermo-Mechanical Fatigue Life Prediction of a Heavy Duty Diesel Engine Liner. ASME Internal Combustion Engine Division Fall Technical Conference, Charleston, South Carolina, USA.Google Scholar
  7. Damiani, T.M., Holliday, J.E., Zechmeister, M.J., Reinheimer, R.D., Jones, D.P., 2007. Thermal Fatigue Testing and Analysis of a Thick Perforated Ring. ASME Pressure Vessels and Piping Conference, San Antonio, Texas, USA.Google Scholar
  8. Goswami, T., 1997. Low cycle fatigue life prediction-a new model. International Journal of Fatigue, 19(2):109–115. [doi:10.1016/S0142-1123(96)00065-5]CrossRefGoogle Scholar
  9. Jones, D.P., Holliday, J.E., Leax, T.R., Gordon, J.L., 2004. Analysis of a Thermal Fatigue Test of a Stepped Pipe. ASME/JSME Pressure Vessels and Piping Conference, San Diego, California, USA.Google Scholar
  10. Kaisaki, N., Takasho, H., Kobayashi, S., 2008. Spectra Thermal Fatigue Tests under Frequency Controlled Fluid Temperature Variation: Superposed Sinusoidal Temperature Fluctuation Tests. ASME Pressure Vessels and Piping Conference, Chicago, Illinois, USA.Google Scholar
  11. Lin, Z.M., 2006. Manufacture status and develop direction of engines. Journal of Aeroengine, 32(1):1–8.Google Scholar
  12. Manson, S.S., 1966. Thermal Stress and Low Cycle Fatigue. McGraw-Hill, New York.Google Scholar
  13. Malesys, N., Vincent, L., Hild, F., 2008. Probabilistic Modeling of Crack Networks in Thermal Fatigue. ASME Pressure Vessels and Piping Conference, Chicago, Illinois, USA.Google Scholar
  14. Mönig, R., Keller, R.R., Volkert, C.A., 2004. Thermal fatigue testing of thin metal films. Review of Scientific Instruments, 75(11):4997–5004. [doi:10.1063/1.1809260]CrossRefGoogle Scholar
  15. Morita, A., Kagawa, H., Kubo, S., 2004. Evaluation of Multiple Crack Propagation Behavior in a Gas Turbine Blade Under Thermal Fatigue Condition. ASME/JSME Pressure Vessels and Piping Conference, San Diego, California, USA.Google Scholar
  16. Musi, S., Beaud, F., 2003. An Analytical Model for Thermal Fatigue Crack Initiation and Propagation in Mixing Zones of Piping Systems. ASME Pressure Vessels and Piping Conference, Cleveland, Ohio, USA.Google Scholar
  17. Piehler, R.S., Damiani, T.M., 2008. Fatigue and Crack Growth Analysis of a Thick Instrumentation Ring Subjected to Thermal Fatigue Cycling. ASME Pressure Vessels and Piping Conference, Chicago, Illinois, USA.Google Scholar
  18. Ping, X., Guo, Y.W., 1984. Thermal Stress and Thermal Fatigue. National defense industry Press, Beijing, China.Google Scholar
  19. Sakhuja, A., Brevick, J.R., 2004. Prediction of thermal fatigue in tooling for die-casting copper via finite element analysis. AIP Conferences Proceedings, 712(1):1881–1886. [doi:10.1063/1.1766807]CrossRefGoogle Scholar
  20. Wong, T.E., Chu, C., 2006. Thermal Fatigue Life Prediction Model of CCGA Tin-Lead and Lead-Free Interconnects. ASME International Mechanical Engineering Congress and Exposition, Chicago, Illinois, USA.Google Scholar
  21. Zhou, X., Yu, X.L., 2008. Fatigue crack growth rate test using a frequency sweep method. Journal of Zhejiang University-SCIENCE A, 9(3):346–350. [doi:10.1631/jzus.A0720009]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Automotive Safety and EnergyTsinghua UniversityBeijingChina
  2. 2.Beijing Power Machinery Research InstituteBeijingChina

Personalised recommendations