Journal of Zhejiang University-SCIENCE A

, Volume 10, Issue 11, pp 1541–1560 | Cite as

J-integral resistance curve testing and evaluation



In this paper a critical review is presented of the history and current state of the art of J-integral resistance curve testing and experimental evaluation methods in conjunction with a discussion of the development of the plane strain fracture toughness test standard ASTM E1820 developed by American Society for Testing and Materials (ASTM). Early research efforts on this topic are reviewed first. These include the J-integral concept, experimental estimates of the J-integral for stationary cracks, load line displacement (LLD) and crack mouth opening displacement (CMOD) based η factor equations, different formulations of J-integral incremental equations for growing cracks, crack growth corrected J-R curve determination, and experimental test methods. Recent developments in J-R curve testing and evaluation are then described, with emphasis on accurate J-integral incremental equations, a normalization method, a modified basic method, a CMOD direct method with use of incremental equations, relationships of plastic geometry factors, constraint-dependent J-R curve testing and correction approaches. An overview of the present fracture toughness test standard ASTM E1820-08a is then presented. The review shows that after more than 40 years of investigation and development, the J-integral resistance curve test methods in ASTM E1820 have become simpler, more cost-effective and more accurate.

Key words

J-integral J-R curve Fracture toughness Fracture testing Crack growth 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T.L., 1995. Fracture Mechanics: Fundamentals and Applications (2nd Ed.). CRC Press, USA.MATHGoogle Scholar
  2. ASTM E1820-08a, 2008. Standard Test Method for Measurement of Fracture Toughness. American Society for Testing and Materials (ASTM) International, West Conshohocken, PA, USA.Google Scholar
  3. Bakker, A., 1985. A DC Potential Drop Procedure for Crack Initiation and R-Curve Measurements during Ductile Fracture Tests. Elastic-Plastic Fracture Test Methods: The User’s Experience, ASTM STP 586, p.394–410.Google Scholar
  4. Begley, J.A., Landes, J.D., 1972. The J-Integral as a Fracture Criterion. Fracture Mechanics, ASTM STP 515, p.1–23.Google Scholar
  5. Chao, Y.J., Zhu, X.K., 1998. J-A 2 characterization of crack-tip fields: extent of J-A 2 dominance and size requirements. International Journal of Fracture, 89(3):285–307. [doi:10.1023/A:1007487911376]CrossRefGoogle Scholar
  6. Chao, Y.J., Zhu, X.K., 2000. Constraint-modified J-R curves and its applications to ductile crack growth. International Journal of Fracture, 106(2):135–160. [doi:10.1023/A:1007638400006]CrossRefGoogle Scholar
  7. Chao, Y.J., Zhu, X.K., Kim, Y., Lam, P.S., Pechersky, M.J., Morgan, M.J., 2004. Characterization of crack-tip field and constraint for bending specimens under large-scale yielding. International Journal of Fracture, 127(3): 283–302. [doi:10.1023/B:FRAC.0000036849.12397.6c]CrossRefMATHGoogle Scholar
  8. Clarke, G.A., Landes, J.D., 1979. Evaluation of the J-integral for the compact specimen. Journal of Testing and Evaluation, 7(5):264–269. [doi:10.1520/JTE10222J]CrossRefGoogle Scholar
  9. Clarke, G.A., Andrews, W.R., Paris, P.C., Schmidt, D.W., 1976. Single Specimen Tests for JIC Determination. Mechanics of Crack Growth, ASTM STP 590, p.27–42. [doi:10.1520/STP33937S]Google Scholar
  10. Cotterell, B., 2002. The past, present and future of fracture mechanics. Engineering Fracture Mechanics, 69(5):533–553. [doi:10.1016/S0013-7944(01)00101-1]CrossRefGoogle Scholar
  11. Cravero, S., Ruggieri, C., 2007. Further developments in J evaluation procedure for growing cracks based on LLD and CMOD data. International Journal of Fracture, 148(4): 387–400. [doi:10.1007/s10704-008-9211-9]CrossRefMATHGoogle Scholar
  12. Donato, G.H.B., Ruggieri, C., 2006. Estimation Procedure for J and CTOD Fracture Parameters Using Three-Point Bend Specimens. Proceedings of the 6th International Pipeline Conference, Calgary, Canada.Google Scholar
  13. Džugan, J., Viehrig, H.W., 2004. Application of the normalization method for the determination of J-R curves. Materials Science and Engineering A, 387-389:307–311. [doi:10.1016/j.msea.2004.01.067]CrossRefGoogle Scholar
  14. Ernst, H.A., Paris, P.C., Landes, J.D., 1981. Estimations on J-Integral and Tearing Modulus T from a Single Specimen Test Record. The 13th Conference on Fracture Mechanics, ASTM STP 743, p.476–502.Google Scholar
  15. Etemad, M.R., Turner, C.E., 1985. An experimental investigation of slow stable crack growth using HY130 steel. Journal of Strain Analysis for Engineering Design, 20(4):201–208. [doi:10.1243/03093247V204201]CrossRefGoogle Scholar
  16. Etemad, M.R., John, S.J., Turner, C.E., 1988. Elastic-Plastic R-Curves for Large Amounts of Crack Growth. The 18th Symposium on Fracture Mechanics, ASTM STP 945, p.986–1004.Google Scholar
  17. Garwood, S.J., Robinson, J.N., Turner, C.E., 1975. The measurement of crack growth resistance curves (R-curves) using the J integral. International Journal of Fracture, 11(3):528–530.Google Scholar
  18. Hancock, J.W., Reuter, W.G., Parks, D.M., 1993. Constraint and Toughness Parameterized by T. Constraint Effects in Fracture, ASTM STP 1171, p.21–40. [doi:10.1520/STP18021S]Google Scholar
  19. Herrera, R., Landes, J.D., 1988. Direct J-R curve analysis of fracture toughness test. Journal of Testing and Evaluation, 16(5):427–449. [doi:10.1520/JTE11618J]CrossRefGoogle Scholar
  20. Herrera, R., Landes, J.D., 1990. Direct J-R Curve Analysis: A Guide to the Methodology. The 21st Symposium on Fracture Mechanics, ASTM STP 1074, p.24–43.Google Scholar
  21. Hu, J.M., Albrecht, P., Joyce, J.A., 1992. Load Ratio Method for Estimating Crack Extension. The 22nd Symposium on Fracture Mechanics, ASTM STP 1131 (I), p.880–903.Google Scholar
  22. Hutchinson, J.W., 1968. Singular behavior at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids, 16(1):13–31. [doi:10.1016/0022-5096(68)90014-8]CrossRefMATHGoogle Scholar
  23. Hutchinson, J.W., Paris, P.C., 1979. Stability Analysis of J-Controlled Crack Growth. Elastic-Plastic Fracture, ASTM STP 668, p.37–64.Google Scholar
  24. Johnson, H.H., 1965. Calibrating the electric potential method for studying slow crack growth. Materials Research and Standards, 5(9):442–445.Google Scholar
  25. Joyce, J.A., 1992. J-Resistance Curve Testing of Short Crack Bend Specimens Using Unloading Compliance. The 22nd Symposium on Fracture Mechanics, ASTM STP 1131 (I), p.904–924.Google Scholar
  26. Joyce, J.A., 1996. Manual on Elastic-Plastic Fracture: Laboratory Test Procedures. ASTM Manual Series, MNL27, West Conshohocken, PA, USA.CrossRefGoogle Scholar
  27. Joyce, J.A., 2001. Analysis of a high rate round robin based on proposed annexes to ASTM E 1820. Journal of Testing and Evaluation, 29(4):329–351. [doi:10.1520/JTE12262J]CrossRefGoogle Scholar
  28. Joyce, J.A., Gudas, J.P., 1979. Computer Interactive JIC Testing of Navy Alloys. Elastic-Plastic Fracture, ASTM STP 668, p.451–468.Google Scholar
  29. Joyce, J.A., Link, R.E., 1995. Effects of Constraint on Upper Shelf Fracture Toughness. The 26th Symposium on Fatigue and Fracture Mechanics, ASTM STP 1265, p.142–177.Google Scholar
  30. Joyce, J.A., Link, R.E., 1997. Application of two parameter elastic-plastic fracture mechanics to analysis of structures. Engineering Fracture Mechanics, 57(4):431–446. [doi:10.1016/S0013-7944(97)00030-1]CrossRefGoogle Scholar
  31. Joyce, J.A., Joyce, P.J., 2004. Toughness characterization of a metal filled polytetrafluoro-ethylene using the J-integral. Engineering Fracture Mechanics, 71(16-17):2513–2531. [doi:10.1016/j.engfracmech.2003.12.009]CrossRefGoogle Scholar
  32. Joyce, J.A., Ernst, H., Paris, P.C., 1980. Direct J-R Curve Analysis: A Guide to the Methodology. The 12th National Symposium on Fracture Mechanics, ASTM STP 700, p.222–236. [doi:10.1520/STP18031S]Google Scholar
  33. Joyce, J.A., Hackett, E.M., Roe, C., 1993. Effect of Crack Depth and Mode of Loading on the J-R Curve Behavior of a High-Strength Steel. Constraint Effects in Fracture, ASTM STP 1171, p.239–263.Google Scholar
  34. Joyce, J.A., Albrecht, P., Tjiang, H.C., Wright, W.J., 2001. Compliance Ratio Method of Estimating Crack Length in Dynamic Fracture Toughness Tests. Fatigue and Fracture Mechanics, ASTM STP 1406, p.139–157.Google Scholar
  35. Kanninen, M.F., Popelar, C.H., 1985. Advanced Fracture Mechanics. Oxford University Press, New York.MATHGoogle Scholar
  36. Kim, Y.J., Schwalbe, K.H., 2001. On experimental J estimation equations based on CMOD for SE(B) specimen. Journal of Testing and Evaluation, 29(1):67–71. [doi:10.1520/JTE12393J]CrossRefGoogle Scholar
  37. Kim, Y.J., Kim, J.S., Cho, S.M., Kim, Y.J., 2004. 3-D constraint effects on J testing and crack tip constraint in M(T), SE(B), SE(T), C(T) specimens: numerical study. Engineering Fracture Mechanics, 71(9–10):1203–1218. [doi:10.1016/S0013-7944(03)00211-X]CrossRefGoogle Scholar
  38. Kirk, M.T., Dodds, R.H., 1993. J and CTOD estimation equations for shallow cracks in single edge notch bend specimens. Journal of Testing and Evaluation, 21(4):228–238. [doi:10.1520/JTE11948J]CrossRefGoogle Scholar
  39. Kroon, M., Faleskog, J., Oberg, H., 2008. A probabilistic model for cleavage fracture with a length scale-parameter estimation and predictions of growing crack experiments. Engineering Fracture Mechanics, 75(8):2398–2417. [doi:10.1016/j.engfracmech.2007.08.009]CrossRefGoogle Scholar
  40. Lam, P.S., Chao, Y.J., Zhu, X.K., Kim, Y., Sindelar, R.L., 2003. Determination of constraint-modified J-R curves for carbon steel storage tanks. Journal of Pressure Vessel Technology, 125(2):136–143. [doi:10.1115/1.1564069]CrossRefGoogle Scholar
  41. Landes, J.D., Begley, J.A., 1972. The Effect of Specimen Geometry on JIC. Fracture Mechanics, ASTM STP 515, p.24–39.Google Scholar
  42. Landes, J.D., Walker, H., Clarke, G.A., 1979. Evaluation of Estimation Procedures Used in J-Integral Testing. Elastic-Plastic Fracture, ASTM STP 668, p.266–287.Google Scholar
  43. Landes, J.D., Zhou, Z., Lee, K., Herrera, R., 1991. Normalization method for developing J-R curves with the LMN function. Journal of Testing and Evaluation, 19(4):305–311. [doi:10.1520/JTE12574J]CrossRefGoogle Scholar
  44. Leis, B.N., Zhu, X.K., Shen, G., Tyson, W.R., 2009. Effective Experimental Measurement and Constraint Quantification of J-R Curves for X80 Pipeline Steel. Proceedings of the 12th International Conference on Fracture, Ottawa, Canada.Google Scholar
  45. Marschall, C.W., Held, P.R., Landow, M.P., Mincer, P.N., 1990. Use of the Direct-Current Electric Potential Method to Monitor Large Amounts of Crack Growth in Highly Ductile Metals. The 21st Symposium on Fracture Mechanics, ASTM STP 1074, p.581–593.Google Scholar
  46. Merkle, J.G., Corten, H.T., 1974. A J integral analysis for the compact specimen, considering axial force as well as bending effects. Journal of Pressure Vessel Technology, 96(4):286–292.CrossRefGoogle Scholar
  47. Milne, I., Ritchie, R.O., Karihaloo, B., 2003. Comprehensive Structural Integrity. Elsevier Science, Amsterdam, Holand.Google Scholar
  48. Morhain, C., Velasco, J.I., 2002. J-R curve determination of magnesium hydroxide filled polypropylene using the normalization method. Journal of Materials Science, 37(8):1635–1644. [doi:10.1023/A:1014944729912]CrossRefGoogle Scholar
  49. Morrison, J., Karisallen, K.J., 1995. An experimental comparison of J and CTOD estimation formulas. Engineering Fracture Mechanics, 51(1):145–149. [doi:10.1016/0013-7944(94)00239-E]CrossRefGoogle Scholar
  50. Neimitz, A., 2008. The jump-like crack growth model, the estimation of fracture energy and J R curve. Engineering Fracture Mechanics, 75(2):236–252. [doi:10.1016/j.engfracmech.2007.03.020]CrossRefGoogle Scholar
  51. Neimitz, A., Dzioba, I., Galkiewicz, J., Molasy, R., 2004. A study of stable crack growth using experimental methods, finite elements and fractography. Engineering Fracture Mechanics, 71(9–10):1325–1355. [doi:10.1016/S0013-7944(03)00169-3]CrossRefGoogle Scholar
  52. Nevalainen, M., Dodds, R.H., 1990. Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens. International Journal of Fracture, 74(2):131–161. [doi:10.1007/BF00036262]CrossRefGoogle Scholar
  53. Newman, J.C., James, M.A., Zerbst, U., 2003. A review of the CTOA/STOD fracture criterion. International Journal of Fracture, 70(3–4):371–385.Google Scholar
  54. O’Dowd, N.P., Shih, C.F., 1991. Family of crack-tip fields characterized by a triaxiality parameter—I. Structure of fields. Journal of the Mechanics and Physics of Solids, 39(8):989–1015. [doi:10.1016/0022-5096(91)90049-T]CrossRefGoogle Scholar
  55. O’Dowd, N.P., Shih, C.F., 1994. Two-parameter Fracture Mechanics: Theory and Applications. Fracture Mechanics, ASTM STP 1207, p.21–47.Google Scholar
  56. Oh, Y.J., Hwang, I.S., 2006. Review of dynamic loading J-R curve method for leak before break of nuclear piping. Nuclear Engineering and Technology, 38(7):639–656.Google Scholar
  57. Oh, Y.J., Hwang, I.S., Joyce, J.A., 2006. Round robin test on normalization method under static loading condition. Journal of Testing and Evaluation, 34(6):537–561.Google Scholar
  58. Orange, T.W., 1990. Methods and Models for R-Curve Instability Calculations. The 21st Symposium on Fracture Mechanics, ASTM STP 1074, p.545–559.Google Scholar
  59. Paris, P.C., Ernst, H., Turner, C.E., 1980. A J-Integral Approach to the Development of η Factors. The 112th Conference on Fracture Mechanics, ASTM STP 700, p.338–251.Google Scholar
  60. Reynolds, A.P., 1996. Comparison of R-curve methodologies for ranking the toughness of aluminum alloys. Journal of Testing and Evaluation, 24(6):406–410. [doi:10.1520/JTE11464J]CrossRefGoogle Scholar
  61. Rice, J.R., 1968. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 35(2):379–386.CrossRefGoogle Scholar
  62. Rice, J.R., Rosengren, G.F., 1968. Plane strain deformation near a crack tip in a power law hardening material. Journal of the Mechanics and Physics of Solids, 16(1):1–12. [doi:10.1016/0022-5096(68)90013-6]CrossRefMATHGoogle Scholar
  63. Rice, J.R., Paris, P.C., Merkle, J.G., 1973. Some Further Results of J-Integral Analysis and Estimates. Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536, p.231–245.Google Scholar
  64. Schwalbe, K.H., Hellmann, D., 1981. Application of the electrical potential method to crack length measurements using Johnson’s formula. Journal of Testing and Evaluation, 9(3):218–221. [doi:10.1520/JTE11560J]CrossRefGoogle Scholar
  65. Schwalbe, K.H., Setz, W., 1981. R curve and fracture toughness of thin sheet materials. Journal of Testing and Evaluation, 9(4):182–194. [doi:10.1520/JTE11226J]CrossRefGoogle Scholar
  66. Scibetta, M., Lucon, E., Schuurmans, J., van Walle, E., 2006. Numerical simulations to support the normalization data reduction technique. Engineering Fracture Mechanics, 73(4):524–534. [doi:10.1016/j.engfracmech.2005.08.009]CrossRefGoogle Scholar
  67. Sharobeam, M.H., Landes, J.D., 1991. The load separation criterion and methodology in ductile fracture mechanics. International Journal of Fracture, 47(2):81–104. [doi:10.1007/BF00032571]CrossRefGoogle Scholar
  68. Sharobeam, M.H., Landes, J.D., 1993. The load separation and ηpl development in precracked specimen test records. International Journal of Fracture, 59(3):213–226. [doi:10.1007/BF02555184]CrossRefGoogle Scholar
  69. Shen, G., Tyson, W.R., Glover, A., Horsley, D., 2004. Constraint Effects on Linepipe Toughness. Proceedings of the 4th International Conference on Pipeline Technology, Ostend, Belgium, 2:703–720.Google Scholar
  70. Sumpter, J.D.G., 1987. JC determination for shallow notch welded bend specimens. Fatigue and Fracture of Engineering Materials and Structures, 10(6):479–493. [doi:10.1111/j.1460-2695.1987.tb00498.x]CrossRefGoogle Scholar
  71. Sumpter, J.D.G., Turner, C.E., 1976. Method for Laboratory Determination of JC (Contour Integral for Fracture Analysis). Cracks and Fracture, ASTM STP 601, p.3–18. [doi:10.1520/STP28634S]Google Scholar
  72. Tada, H., Paris, P.C., Irwin, G.R., 1973. The Stress Analysis of Cracks Handbook. Del Research Corporation, Hellertown, PA, USA.Google Scholar
  73. Turner, C.E., 1973. Fracture toughness and specific energy: a reanalysis of results. Materials Science and Engineering, 11(5):275–282. [doi:10.1016/0025-5416(73)90092-X]CrossRefGoogle Scholar
  74. Turner, C.E., 1981. Fracture mechanics assessment and design. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 299(1446):73–92. [doi:10.1098/rsta.1981.0010]CrossRefGoogle Scholar
  75. Turner, C.E., 1983. Further Development of J-Based Design Curve and Its Relationship to Other Procedures. Elastic-Plastic Fracture, ASTM STP 803 (II), p.80–102.Google Scholar
  76. Wallin, K., Laukkanen, A., 2004. Improved crack growth corrections for J-R curve testing. Engineering Fracture Mechanics, 71(11):1601–1614. [doi:10.1016/S0013-7944(03)00165-6]CrossRefGoogle Scholar
  77. Wang, Y.Y., Reemsnyder, H.S., Kirk, M.T., 1997. Inference Equations for Fracture Toughness Testing: Numerical Analysis and Experimental Verification. Fatigue and Fracture Mechanics, ASTM STP 1321, p.469–484.Google Scholar
  78. Wu, S.X., Mai, Y.W., Cotterell, B., 1988. Plastic rotation factors of three-point bend and compact tension specimens. Journal of Testing and Evaluation, 16(6):555–557. [doi:10.1520/JTE11276J]CrossRefGoogle Scholar
  79. Wu, S.X., Mai, Y.W., Cotterell, B., 1990. Plastic η-factor of fracture specimens with deep and shallow cracks. International Journal of Fracture, 445(1):1–18. [doi:10.1007/BF00012606]CrossRefGoogle Scholar
  80. Yang, S., Chao, Y.J., Sutton, M.A., 1993. Higher-order asymptotic fields in a power-law hardening material. Engineering Fracture Mechanics, 45(1):1–20. [doi:10.1016/0013-7944(93)90002-A]CrossRefGoogle Scholar
  81. Zerbst, U., Heinimann, M., Donne, C.D., Steglich, D., 2009. Fracture and damage mechanics modeling of thin-walled structures—an overview. Engineering Fracture Mechanics, 76(1):5–43. [doi:10.1016/j.engfracmech.2007.10.005]CrossRefGoogle Scholar
  82. Zhou, D.W., Xu, W.G., Smith, S.D., 2009. R-curve Modeling with Constraint Effect. Proceedings of the 12th International Conference on Fracture, Ottawa, Canada.Google Scholar
  83. Zhu, X.K., Chao, Y.J., 2001. Constraint effects on crack-tip fields in elastic-perfectly plastic materials. Journal of the Mechanics and Physics of Solids, 49(2):363–399. [doi:10.1016/S0022-5096(00)00030-2]CrossRefMATHGoogle Scholar
  84. Zhu, X.K., Jang, S.K., 2000. J-R curves corrected by load independent parameter in ductile crack growth. Engineering Fracture Mechanics, 68(3):285–301. [doi:10.1016/S0013-7944(00)00100-4]CrossRefGoogle Scholar
  85. Zhu, X.K., Chao, Y.J., 2005. Specimen size requirements for two parameter fracture toughness testing. International Journal of Fracture, 135(1–4):117–136. [doi:10.1007/s10704-005-3946-3]CrossRefGoogle Scholar
  86. Zhu, X.K., Leis, B.N., 2006a. Application of constraint-corrected J-R curve to fracture analysis of pipelines. Journal of Pressure Vessel Technology, 128(4):581–589. [doi:10.1115/1.2349571]CrossRefGoogle Scholar
  87. Zhu, X.K., Leis, B.N., 2006b. Bending modified J-Q theory and crack-tip constraint quantification. International Journal of Fracture, 141(1–2):115–134. [doi:10.1007/s10704-006-0068-5]CrossRefMATHGoogle Scholar
  88. Zhu, X.K., Leis, B.N., 2006c. Constraint corrected J-R curve and its applications for X80 pipeline. Journal of ASTM International, 3(6), paper ID JAI13209. [doi:10.1520/JAI13209]Google Scholar
  89. Zhu, X.K., Joyce, J.A., 2007. J-resistance curve testing of HY80 steel using SE(B) specimens and normalization method. Engineering Fracture Mechanics, 74(14):2263–2281. [doi:10.1016/j.engfracmech.2006.10.018]CrossRefGoogle Scholar
  90. Zhu, X.K., Leis, B.N., 2008a. Fracture resistance curve testing of X80 pipeline steel using SENB specimen and normalization method. Journal of Pipeline Engineering, 7(2):126–136.Google Scholar
  91. Zhu, X.K., Leis, B.N., 2008b. Experimental Determination of J-R Curves Using SENB Specimen and P-CMOD Data. Proceedings of ASME Pressure Vessel and Piping Conference, Chicago, Illinois, USA.Google Scholar
  92. Zhu, X.K., Joyce, J.A., 2009a. More Accurate Approximation of J-integral Equation for Evaluating Fracture Resistance Curves. The 9th International ASTM/ESIS Symposium on Fatigue and Fracture Mechanics, Vancouver, Canada.Google Scholar
  93. Zhu, X.K., Joyce, J.A., 2009b. Revised incremental J-integral equations for ASTM E1820 using crack mouth opening displacement. Journal of Testing and Evaluation, 37(3): 205–214.Google Scholar
  94. Zhu, X.K., Jang, S.K., Chen, Y.F., 2001. A modification of J-Q theory and its applications. International Journal of Fracture, 111(3):L47–L52. [doi:10.1023/A:1012424711672]CrossRefGoogle Scholar
  95. Zhu, X.K., Leis, B.N., Joyce, J.A., 2008. Experimental evaluation of J-R curves from load-CMOD record for SE(B) specimens. Journal of Pressure Vessels and Piping, 5(5), paper ID JAI101532.Google Scholar
  96. Zhu, X.K., Lam, P.S., Chao, Y.J., 2009. Applications of normalization method to experimental measurement of fracture toughness for A285 carbon steel. Journal of Pressure Vessels and Piping, 86(10):669–676. [doi:10.1016/j.ijpvp.2009.03.009]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Battelle Memorial InstituteColumbusUSA

Personalised recommendations