Journal of Zhejiang University-SCIENCE A

, Volume 10, Issue 5, pp 716–724 | Cite as

Critical review in adsorption kinetic models

  • Hui Qiu
  • Lu Lv
  • Bing-cai PanEmail author
  • Qing-jian Zhang
  • Wei-ming Zhang
  • Quan-xing Zhang


Adsorption is one of the most widely applied techniques for environmental remediation. Its kinetics are of great significance to evaluate the performance of a given adsorbent and gain insight into the underlying mechanisms. There are lots of references available concerning adsorption kinetics, and several mathematic models have been developed to describe adsorption reaction and diffusion processes. However, these models were frequently employed to fit the kinetic data in an unsuitable or improper manner. This is mainly because the boundary conditions of the associated models were, to a considerable extent, ignored for data modeling. Here we reviewed several widely-used adsorption kinetic models and paid more attention to their boundary conditions. We believe that the review is of certain significance and improvement for adsorption kinetic modeling.

Key words

Adsorption kinetics Reaction models Diffusion models Film diffusion Intraparticle diffusion 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksu, Z., Kabasakal, E., 2004. Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon. Separation and Purification Technology, 35(3):223–240. [doi:10.1016/S1383-5866(03)00144-8]CrossRefGoogle Scholar
  2. Al-Asheh, S., Banat, F., Masad, A., 2004. Kinetics and equilibrium sorption studies of 4-nitrophenol on pyrolyzed and activated oil shale residue. Environmental Geology, 45(8):1109–1117. [doi:10.1007/s00254-004-0969-4]CrossRefGoogle Scholar
  3. Alkan, M., Demirbaş, Ö., Doğan, M., 2007. Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite. Microporous and Mesoporous Materials, 101(3): 388–396. [doi:10.1016/j.micromeso.2006.12.007]CrossRefGoogle Scholar
  4. Anirudhan, T.S., Radhakrishnan, P.G., 2008. Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell. The Journal of Chemical Thermodynamics, 40(4):702–709. [doi:10.1016/j.jct.2007.10.005]CrossRefGoogle Scholar
  5. Banat, F., Al-Asheh, S., Makhadmeh, L., 2003. Preparation and examination of activated carbons from date pits impregnated with potassium hydroxide for the removal of methylene blue from aqueous solutions. Adsorption Science and Technology, 21(6):597–606. [doi:10.1260/026361703771953613]CrossRefGoogle Scholar
  6. Boyd, G.E., Adamson, A.W., Myers, L.S., 1947. The exchange adsorption of ions from aqueous solutions by organic zeolites, II, Kinetics. Journal of the American Chemical Society, 69(11):2836–2848. [doi:10.1021/ja01203a066]CrossRefGoogle Scholar
  7. Chen, Z., Ma, W., Han, M., 2008. Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models. Journal of Hazardous Materials, 155(1-2):327–333. [doi:10.1016/j.jhazmat.2007.11.064]CrossRefGoogle Scholar
  8. Cheng, W., Wang, S.G., Lu, L., Gong, W.X., Liu, X.W., Gao, B.Y., Zhang, H.Y., 2008. Removal of malachite green (MG) from aqueous solutions by native and heat-treated anaerobic granular sludge. Biochemical Engineering Journal, 39(3):538–546. [doi:10.1016/j.bej.2007.10.016]CrossRefGoogle Scholar
  9. Cheng, X.M., 2004. Study on the Treatment and Resource Reuse of Methyl Salycylate Industry Wastewater. MS Thesis, Nanjing University, China, p.39–56 (in Chinese).Google Scholar
  10. Cheung, C.W., Porter, J.F., McKay, G., 2001. Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Research, 35(3):605–612. [doi:10.1016/S0043-1354(00)00306-7]CrossRefGoogle Scholar
  11. Chien, S.H., Clayton, W.R., 1980. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society of America Journal, 44:265–268.CrossRefGoogle Scholar
  12. Chiron, N., Guilet, R., Deydier, E., 2003. Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models. Water Research, 37(13):3079–3086. [doi:10.1016/S0043-1354(03)00156-8]CrossRefGoogle Scholar
  13. Coleman, N.T., McClung, A.C., Moore, D.P., 1956. Formation constants for Cu(II)-peat complexes. Science, 123(3191): 330–331.CrossRefGoogle Scholar
  14. Cooney, D.O., 1999. Adsorption Design for Wastewater Treatment. Lewis Publishers, Boca Raton.Google Scholar
  15. Crank, J., 1956. Mathematics of Diffusion. Oxford at the Clarendon Press, London, England.zbMATHGoogle Scholar
  16. Hamadi, N.K., Swaminathan, S., Chen, X.D., 2004. Adsorption of Paraquat dichloride from aqueous solution by activated carbon derived from used tires. Journal of Hazardous Materials, 112(1–2):133–141. [doi:10.1016/j.jhazmat.2004.04.011]CrossRefGoogle Scholar
  17. Hameed, B.H., 2008. Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. Journal of Hazardous Materials, 154(1–3):204–212. [doi:10.1016/j.jhazmat.2007.10.010]CrossRefGoogle Scholar
  18. Hameed, B.H., El-Khaiary, M.I., 2008a. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies. Journal of Hazardous Materials, 154(1–3):237–244. [doi:10.1016/j.jhazmat.2007.10.017]CrossRefGoogle Scholar
  19. Hameed, B.H., El-Khaiary, M.I., 2008b. Sorption kinetics and isotherm studies of a cationic dye using agricultural waste: Broad bean peels. Journal of Hazardous Materials, 154(1-3):639–648. [doi:10.1016/j.jhazmat.2007.10.081]CrossRefGoogle Scholar
  20. Hameed, B.H., Mahmoud, D.K., Ahmad, A.L., 2008. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. Journal of Hazardous Materials, 158(1):65–72. [doi:10.1016/j.jhazmat.2008.01.034]CrossRefGoogle Scholar
  21. Heimberg, J.A., Wahl, K.J., Singer, I.L., Erdemir, A., 2001. Superlow friction behavior of diamond-like carbon coatings: time and speed effects. Applied Physics Letters, 78(17):2449–2451. [doi:10.1063/1.1366649]CrossRefGoogle Scholar
  22. Ho, Y.S., 2004. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1): 171–177. [doi:10.1023/]CrossRefGoogle Scholar
  23. Ho, Y.S., 2006. Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3): 103–111. [doi:10.1016 /j.jhazmat.2005.12.043]CrossRefGoogle Scholar
  24. Ho, Y.S., McKay, G., 1998a. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76(4):332–340. [doi:10.1205/095758298529696]CrossRefGoogle Scholar
  25. Ho, Y.S., McKay, G., 1998b. Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70(2):115–124. [doi:10.1016/S0923-0467(98)00076-1]CrossRefGoogle Scholar
  26. Ho, Y.S., McKay, G., 2000. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 34(3):735–742. [doi:10.1016/S0043-1354(99)00232-8]CrossRefGoogle Scholar
  27. Huang, W.W., Wang, S.B., Zhu, Z.H., Li, L., Yao, X.D., Rudolph, V., Haghseresht, F., 2008. Phosphate removal from wastewater using red mud. Journal of Hazardous Materials, 158(1):35–42. [doi:10.1016/j.jhazmat.2008.01.061]CrossRefGoogle Scholar
  28. Jain, A.K., Gupta, V.K., Jain, S., Suhas, 2004. Removal of chlorophenols using industrial wastes. Environmental Science & Technology, 38(4):1195–1200. [doi:10.1021/es034412u]CrossRefGoogle Scholar
  29. Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4):1–39.Google Scholar
  30. Lazaridis, N.K., Asouhidou, D.D., 2003. Kinetics of sorptive removal of chromium(VI) from aqueous solutions by calcined Mg-Al-CO3 hydrotalcite. Water Research, 37(12):2875–2882. [doi:10.1016/S0043-1354(03)00119-2]CrossRefGoogle Scholar
  31. Low, M.J.D., 1960. Kinetics of chemisorption of gases on solids. Chemical Reviews, 60(3):267–312.CrossRefGoogle Scholar
  32. Mahramanlioglu, M., Kizilcikli, I., Bicer, I.O., 2002. Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth. Journal of Fluorine Chemistry, 115(1):41–47. [doi:10.1016/S0022-1139(02)00003-9]CrossRefGoogle Scholar
  33. Meng, F.W., 2005. Study on a Mathematical Model in Predicting Breakthrough Curves of Fixed-bed Adsorption onto Resin Adsorbent. MS Thesis, Nanjing University, China, p.28–36 (in Chinese).Google Scholar
  34. Min, S.H., Han, J.S., Shin, E.W., Park, J.K., 2004. Improvement of cadmium ion removal by base treatment of juniper fiber. Water Research, 38(5):1289–1295. [doi:10.1016/j.watres.2003.11.016]CrossRefGoogle Scholar
  35. Namasivayam, C., Kavitha, D., 2005. Adsorptive removal of 2,4-dichlorophenol from aqueous solution by low-cost carbon from an agricultural solid waste: coconut coir pith. Separation Science and Technology, 39(6):1407–1425. [doi:10.1081/SS-120030490]CrossRefGoogle Scholar
  36. Pan, B.C., Du, W., Zhang, W.M., Zhang, X., Zhang, Q.R., Pan, B.J., Lu, L., Zhang, Q.X., Chen, J.L., 2007. Improved adsorption of 4-nitrophenol onto a novel hyper-crosslinked polymer. Environmental Science & Technology, 41(14):5057–5062. [doi:10.1021/es070134d]CrossRefGoogle Scholar
  37. Petroni, S.L.G., Pires, M.A.F., Munita, C.S., 2004. Use of radiotracer in adsorption studies of copper on peat. Journal of Radioanalytical and Nuclear Chemistry, 259(2):239–243. [doi:10.1023/B:JRNC.0000017295.68663.6b]CrossRefGoogle Scholar
  38. Rosa, S., Laranjeira, M.C.M., Riela, H.G., Fάvere, V.T., 2008. Cross-linked quaternary chitosan as an adsorbent for the removal of the reactive dye from aqueous solutions. Journal of Hazardous Materials, 155(1-2):253–260. [doi:10.1016/j. jhazmat.2007.11.059]CrossRefGoogle Scholar
  39. Rudzinski, W., Panczyk, T., 2000. Kinetics of isothermal adsorption on energetically heterogeneous solid surfaces: a new theoretical description based on the statistical rate theory of interfacial transport. Journal of Physical Chemistry, 104(39):9149–9162. [doi:10.1021/jp000045m]CrossRefGoogle Scholar
  40. Sağ, Y., Aktay, Y., 2002. Kinetic studies on sorption of Cr(VI) and Cu(II) ions by chitin, chitosan and Rhizopus arrhizus. Biochemical Engineering Journal, 12(2):143–153. [doi:10.1016/S1369- 703X(02)00068-2]CrossRefGoogle Scholar
  41. Shin, E.W., Han, J.S., Jang, M., Min, S.H., Park, J.K., Rowell, R.M., 2004. Phosphate adsorption on aluminumimpregnated mesoporous silicates: surface structure and behavior of adsorbents. Environmental Science & Technology, 38(3):912–917. [doi:10.1021/es030488e]CrossRefGoogle Scholar
  42. Slaney, A.J, Bhamidimarri, R., 1998. Adsorption of pentachlorophenol (PCP) by actived carbon in fixed beds: application of homogeneous surface diffusion model. Water Science and Technology, 38(7):227–235. [doi:10.1016/S0273-1223(98)00630-1]CrossRefGoogle Scholar
  43. Sun, Q.Y., Yang, L.Z., 2003. The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Research, 37(7):1535–1544. [doi:10.1016/S0043-1354(02)00520-1]CrossRefGoogle Scholar
  44. Tan, I.A.W., Ahmad, A.L., Hameed, B.H., 2008. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 154(1–3):337–346. [doi:10.1016/j.jhazmat.2007.10.031]CrossRefGoogle Scholar
  45. Tien, C., 2007. Remarks on adsorption manuscripts received and declined: An editorial. Separation and Purification Technology, 54(3):277–278. [doi:10.1016/j.seppur.2007.02.006]MathSciNetCrossRefGoogle Scholar
  46. Tien, C., 2008. Remarks on adsorption manuscripts revised and declined: An editorial. Journal of Hazardous Materials, 150(1):2–3. [doi:10.1016/j.jhazmat.2007.04.015]CrossRefGoogle Scholar
  47. Varshney, K.G., Khan, A.A., Gupta, U., Maheshwari, S.M., 1996. Kinetics of adsorption of phosphamidon on antimony(V) phosphate cation exchanger evaluation of the order of reaction and some physical parameters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 113(1–2):19–23. [doi:10.1016/0927-7757(96)03546-7]CrossRefGoogle Scholar
  48. Wan Ngah, W.S., Hanafiah, M.A.K.M., 2008. Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: Kinetic, equilibrium and thermodynamic studies. Biochemical Engineering Journal, 39(3):521–530. [doi:10.1016/j.bej.2007.11.006]CrossRefGoogle Scholar
  49. Wang, H.L., Chen, J.L., Zhai, Z.C., 2004. Study on thermodynamics and kinetics of adsorption of p-toluidine from aqueous solution by hypercrosslinked polymeric adsorbents. Environmental Chemistry, 23(2):188–192 (in Chinese).Google Scholar
  50. Wilczak, A., Keinath, T.M., 1993. Kinetics of sorption and desorption of copper(II) and lead(II) on activated carbon. Water Environment Research, 65:238–244.CrossRefGoogle Scholar
  51. Xu, G.M., Shi, Z., Deng, J., 2006. Adsorption of antimony on IOCS: kinetics and mechanisms. Acta Scientiae Circumstantiae, 26(4):607–612 (in Chinese).Google Scholar
  52. Yan, G.T., Viraraghavan, T., 2003. Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Research, 37(18): 4486–4496. [doi:10.1016/S0043-1354(03)00409-3]CrossRefGoogle Scholar
  53. Zeldowitsch, J., 1934. Über den mechanismus der katalytischen oxydation von CO an MnO2. Acta Physicochemical URSS, 1:364–449.Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Hui Qiu
    • 1
  • Lu Lv
    • 1
  • Bing-cai Pan
    • 1
    Email author
  • Qing-jian Zhang
    • 1
  • Wei-ming Zhang
    • 1
  • Quan-xing Zhang
    • 1
  1. 1.State Key Laboratory of Pollution Control and Resource Reuse, Department of Environmental Engineering, School of the EnvironmentNanjing UniversityNanjingChina

Personalised recommendations