Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 9, Issue 10, pp 1382–1389 | Cite as

A model for automatic identification of human pulse signals

  • Hui-yan Wang
  • Pei-yong Zhang
Article

Abstract

This paper presents a quantitative method for automatic identification of human pulse signals. The idea is to start with the extraction of characteristic parameters and then to construct the recognition model based on Bayesian networks. To identify depth, frequency and rhythm, several parameters are proposed. To distinguish the strength and shape, which cannot be represented by one or several parameters and are hard to recognize, the main time-domain feature parameters are computed based on the feature points of the pulse signal. Then the extracted parameters are taken as the input and five models for automatic pulse signal identification are constructed based on Bayesian networks. Experimental results demonstrate that the method is feasible and effective in recognizing depth, frequency, rhythm, strength and shape of pulse signals, which can be expected to facilitate the modernization of pulse diagnosis.

Key words

Pulse signal identification Feature extraction Bayesian network Quantitative diagnosis Wavelet transform 

Document code

CLC number

TP391 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chiu, C.C., Yeh, S.J., Chen, C.H., 2000. Self-organizing arterial pressure pulse classification using neural networks: theoretical considerations and clinical applicability. Comput. Biol. Med., 30(2):71–88. [doi:10.1016/S0010-4825(99)00023-2]CrossRefGoogle Scholar
  2. Dharmananda, S., 2000. The Significance of Traditional Pulse Diagnosis in the Modern Practice of Chinese Medicine. Institute for Traditional Medicine, Portland, Oregon. Http://www.itmonline.org/arts/pulse.htm Google Scholar
  3. Dubois, D., Prade, H., Yager, R.R., 1997. Fuzzy Information Engineering: A Guide Tour of Applications. Wiley, New York, p.149–162.Google Scholar
  4. Fei, Z.F., 2003. Contemporary Sphygmology in Traditional Chinese Medicine. People’s Medical Publishing House, Beijing, p.58–73 (in Chinese).Google Scholar
  5. Fei, Z.F., Zhang, Z.F., 1995. Imaging and quantificatoin of traditional pulse taking. Chin. J. Nat., 17(5): 269–274 (in Chinese).MathSciNetGoogle Scholar
  6. Fu, S.E., Lai, S.P., 1989. A System for Pulse Measurement and Analysis of Chinese Medicine. Proc. 11th Annual Int. Conf. on IEEE Engineering in Medicine and Biology Society, p.1695–1696. [doi:10.1109/IEMBS.1989.96411]Google Scholar
  7. Heckerman, D., Geiger, D., Chickering, D., 1995. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20(3):197–243. [doi:10.1007/BF00994016]zbMATHGoogle Scholar
  8. Hu, J.N., Yan, S.C., Wang, X.Z., Chu, H., 1997. An intelligent traditional Chinese medicine pulse analysis system model based on artificial neural network. J. China Med. Univ., 26(2):134–137 (in Chinese).Google Scholar
  9. Hu, S.Y., Liu, X.H., Chen, P.P., 1998. The parameter analysis of wiry pulse arisen from hepatopathy syndrome in traditional Chinese medicine. J. Hunan Coll. TCM, 18(4):3–5 (in Chinese).Google Scholar
  10. Lee, H.L., Suzuki, S., Adachi, Y., Umeno, M., 1993. Fuzzy Theory in Traditional Chinese Pulse Diagnosis. Proc. Int. Joint Conf. on Neural Networks, Nagoya, Japan, 1:774–777. [doi:10.1109/IJCNN.1993.714028]Google Scholar
  11. Liu, X.Y., Wang, H.Q., 2005. A discretization algorithm based on a heterogeneity criterion. IEEE Trans. on Knowl. Data Eng., 17(9):1166–1173. [doi:10.1109/TKDE.2005.135]CrossRefGoogle Scholar
  12. Lu, W.A., Cheng, C.H., Wang, Y.L., Wang, W.K., 1996. Pulse spectrum analysis of hospital patient with possible liver problem. Am. J. Chin. Med., 14(3–4):315–320.CrossRefGoogle Scholar
  13. Nakayama, Y., Tsumura, K., Yamashita, N., Yoshimaru, K., Hayashi, T., 2000. Pulsatility of ascending aortic pressure waveform is a powerful predictor of restenosis after percutaneous transluminal coronary angioplasty. Circulation, 101(5):470–472.CrossRefGoogle Scholar
  14. Nicandro, C.R., Hector-Gabriel, A.M., Rocio-Erandi, B.M., Luis-Alonso, N.F., 2006. How good are the Bayesian information criterion and the minimum description length principle for model selection? A Bayesian network analysis. LNCS, 4293:494–504.Google Scholar
  15. Nie, C.R., 1984. Interpreting the term “qi” in traditional Chinese medicine and the translation of Chinese medical terms. Zhong Xi Yi Jie He Za Zhi, 4(10):632 (in Chinese).Google Scholar
  16. Pearl, J., 1986. Fusion, propagation, and structuring in belief networks. Artif. Intell., 29(3):241–288. [doi:10.1016/0004-3702(86)90072-X]MathSciNetCrossRefzbMATHGoogle Scholar
  17. Quddus, A., Fahmy, M.M., 1999. An Improved Wavelet-based Corner Detection Technique. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 6:3213–3216. [doi:10.1109/ICASSP.1999.757525]Google Scholar
  18. Shu, J.J., Sun, Y.G., 2007. Developing classification indices for Chinese pulse diagnosis. Compl. Ther. Med., 15(3):190–198. [doi:10.1016/j.ctim.2006.06.004]CrossRefGoogle Scholar
  19. Spiegelhalter, D.J., 1991. Probabilistic reasoning in expert systems. Am. J. Math. Manag. Sci., 9(3–4):191–210.MathSciNetGoogle Scholar
  20. Spirtes, P., Meek, C., 1995. Learning Bayesian Networks with Discrete Variables from Data. Proc. 1st Int. Conf. on Knowledge Discovery and Data Mining. AAAI Press, Menlo Park, CA, p.294–299.Google Scholar
  21. Spirtes, P., Glymour, C., Scheines, R., 1993. Causation, Prediction and Search (2nd Ed.). The MIT Press, New York.CrossRefzbMATHGoogle Scholar
  22. Sun, L.U., Tang, Y.Y., Xinge, Y., 2004. Corner Detection for Object Recognition by Using Wavelet Transform. Proc. 3rd Int. Conf. on Machine Learning and Cybernetics, Shanghai, p.26–29.Google Scholar
  23. Tsui, P.H., Lin, L.Y., Chang, C.C., Hwang, J.J., Lin, J.J., Chu, C.C., Chen, C.N., Chang, K.J., Chang, C.C., 2007. Arterial pulse waveform analysis by the probability distribution of amplitude. Physiol. Meas., 28(8):803–812. [doi:10.1088/0967-3334/28/8/004]CrossRefGoogle Scholar
  24. Tu, C.L., Hwang, W.L., 2005. Analysis of singularities from modulus maxima of complex wavelets. IEEE Trans. on Inf. Theory, 51(3):1049–1062. [doi:10.1109/TIT.2004.842706]MathSciNetCrossRefzbMATHGoogle Scholar
  25. Tyan, C.C., Liu, S.H., Chen, J.Y., Liang, W.M., 2008. A novel noninvasive measurement technique for analyzing the pressure pulse waveform of the radial artery. IEEE Trans. on Biomed. Eng., 55(1):288–297. [doi:10.1109/TBME.2007.910681]CrossRefGoogle Scholar
  26. Wang, H.Y., Cheng, Y.Y., 2005. A Quantitative System for Pulse Diagnosis in Traditional Chinese Medicine. Proc. 27th Annual Int. Conf. on IEEE Engineering in Medicine and Biology Society, Shanghai, China, p.5676–5679. [doi:10.1109/IEMBS.2005.1615774]Google Scholar
  27. Wang, H.Y., Zhang, P.Y., 2007. Investigation on the automatic parameters extraction of pulse signals based on wavelet transform. J. Zhejiang Univ. Sci. A, 8(8):1283–1289. [doi:10.1631/jzus.2007.A1283]CrossRefzbMATHGoogle Scholar
  28. Wang, X.W., Qu, H.B., Liu, P., Cheng, Y.Y., 2004. A self-learning expert systems for diagnosis in traditional Chinese medicine. Expert Syst. Appl., 26(4):557–566. [doi:10.1016/j.eswa.2003.10.004]CrossRefGoogle Scholar
  29. Wu, J.H., Chang, R.S., Jiang, J.A., 2007. A novel pulse measurement system by using laser triangulation and a CMOS image sensor. Sensor, 7:3366–3385.CrossRefGoogle Scholar
  30. Xie, L., Zhao, Y., 2003. The primary observation of tense pulse parameters. J. Pract. Trad. Chin. Med., 19(2):102 (in Chinese).Google Scholar
  31. Xu, L.S., Zhang, D., Wang, K.Q., Wang, L., 2006. Arrhythmic pulses detection using Lempel-Ziv complexity analysis. EURASIP J. Appl. Signal Processing, 2006:1–12. [doi:10.1155/ASP/2006/18268]CrossRefzbMATHGoogle Scholar
  32. Yang, Y., Webb, G.I., 2002. A Comparative Study of Discretization Methods for Naive-Bayes Classifiers. Pacific Rim Knowledge Acquisition Workshop, Tokyo, Japan, p.159–173.Google Scholar
  33. Yoon, Y.Z., Lee, M.H., Soh, K.S., 2000. Pulse type classification by varying contact pressure. IEEE Eng. Med. Biol. Mag., 19:106–110. [doi:10.1109/51.887253]Google Scholar
  34. Yue, P.P., 2006. The applications of pulse signal and pulse picture in cardiovascular disease diagnosis. J. Tradit. Chin. Med. Liter., 24(1):31–33 (in Chinese).Google Scholar
  35. Zhang, P.Y., Wang, H.Y., 2008. A framework for automatic time-domain characteristic parameters extraction of human pulse signals. EURASIP J. Adv. Signal Processing, 2008:468390. [doi:10.1155/2008/468390]zbMATHGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.College of Computer Science and Information EngineeringZhejiang Gongshang UniversityHangzhouChina
  2. 2.Institute of VLSI DesignZhejiang UniversityHangzhouChina

Personalised recommendations