Journal of Zhejiang University-SCIENCE A

, Volume 9, Issue 10, pp 1309–1317 | Cite as

Performance analysis of IEEE 802.11 DCF networks

Article

Abstract

This paper presents an analytical saturation throughput model of IEEE 802.11 DCF (distributed coordination function) with basic access in ad hoc mode. The model takes into account freezing of the backoff timer when a station senses busy channel. It is shown that taking into account this feature of DCF is important in modeling saturation throughput by yielding more accurate and realistic results than models known from literature. The proposed analytical model also takes into account the effect of transmission errors. All essential features of the proposed analytical approach are illustrated with numerical results. The presentation of the model is proceeded by an overview of approaches to IEEE 802.11 network performance evaluation presented in the literature.

Key words

IEEE 802.11 Distributed coordination function (DCF) CSMA/CA Modeling 

Document code

CLC number

TN92 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bianchi, G., 2000. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun., 18(3):535–547. [doi:10.1109/49.840210]CrossRefGoogle Scholar
  2. Bianchi, G., Tinnirello, I., 2005. Remarks on IEEE 802.11 DCF performance analysis. IEEE Commun. Lett., 9(8):765–767. [doi:10.1109/LCOMM.2005.1496609]CrossRefGoogle Scholar
  3. Cali, F., Conti, M., Gregori, E., 2000. Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Trans. on Networking, 8(6):785–799. [doi:10.1109/90.893874]CrossRefGoogle Scholar
  4. Chatzimisios, P., Boucouvalas, A., Vitsas, V., 2003. Influence of channel BER on IEEE 802.11 DCF. IEE Electr. Lett., 39(23):1687–1689. [doi:10.1049/el:20031081]CrossRefGoogle Scholar
  5. Engelstad, P., Østerbø, O., 2006. Queueing Delay Analysis of IEEE 802.11e EDCA. Proc. 3rd Annual Conf. on Wireless On-demand Network Systems and Services, p.123–133.Google Scholar
  6. Ergen, M., Varaiya, P., 2005. Throughput analysis and admission control in IEEE 802.11a. Springer Mob. Networks Appl., 10(5):705–706. [doi:10.1007/s11036-005-3364-9]CrossRefGoogle Scholar
  7. Heusse, M., Rousseau, F., Guillier, R., Duda, A., 2005. Idle Sense: An Optimal Access Method for High Throughput and Fairness in Rate Diverse Wireless LANs. SIGCOMM Conf. on Applications, Technologies, Architectures and Protocols for Computer Communications, Philadelphia, p.121–132.Google Scholar
  8. IEEE 802.11, 1999. IEEE Standards for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Network-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. ISO/IEC 8802-11.Google Scholar
  9. IEEE 802.11a, 1999. IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 1: High-speed Physical Layer in the 5 GHz Band. 8802-11:1999/AMD 1:2000(E).Google Scholar
  10. IEEE 802.11b, 1999. Wireless LAN MAC and PHY Specifications: Higher-speed Physical Layer (PHY) Extension in the 2.4 GHz Band. Supplement to 802.11-1999.Google Scholar
  11. IEEE 802.11e, 2005. IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements.Google Scholar
  12. IEEE 802.11g, 2003. IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 4: Further Higher-speed Physical Layer Extension in the 2.4 GHz Band.Google Scholar
  13. Kochut, A., Vasan, A., Shankar, A., Agrawala, A., 2004. Sniffing Out the Correct Physical Layer Capture Model in 802.11b. Proc. 12th IEEE Int. Conf. on Network Protocols, Berlin, p.252–261. [doi:10.1109/ICNP.2004.1348115]Google Scholar
  14. Lopez-Aguilera, E., Heusse, M., Rousseau, F., Duda, A., Casademont, J., 2006. Evaluating Wireless LAN Access Methods in Presence of Transmission Errors. Proc. IEEE INFOCOM, Barcelona, p.1–6.Google Scholar
  15. Ni, Q., Li, T., Turletti, T., Xiao, Y., 2005. Saturation throughput analysis of error-prone 802.11 wireless networks. Wirel. Commun. Mob. Comput., 5(8):945–956. [doi:10.1002/wcm.358]CrossRefGoogle Scholar
  16. Tay, Y., Chua, K., 2001. A capacity analysis for the IEEE 802.11 MAC protocol. Wirel. Networks, 7(2):159–171. [doi:10.1023/A:1016637622896]CrossRefMATHGoogle Scholar
  17. Wu, H., Peng, Y., Long, K., Cheng, S., Ma, J., 2002. Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement. Proc. IEEE INFOCOM, New York City, 2:599–607.Google Scholar
  18. Xiao, Y., 2003. A simple and effective priority scheme for IEEE 802.11. IEEE Commun. Lett., 7(2):70–72. [doi:10.1109/LCOMM.2002.808370]CrossRefGoogle Scholar
  19. Xiao, Y., 2004. Performance Analysis of IEEE 802.11e EDCF under Saturation Conditions. Proc. IEEE ICC, Paris, France, p.170–174.Google Scholar
  20. Ziouva, E., Antonakopoulos, T., 2002. CSMA/CA performance under high traffic conditions: throughput and delay analysis. Comput. Commun., 25(3):313–321. [doi:10.1016/S0140-3664(01)00369-3]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Institute of TelecommunicationsWarsaw University of TechnologyWarsawPoland

Personalised recommendations