Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 9, Issue 10, pp 1420–1425 | Cite as

Forward and backward models for fault diagnosis based on parallel genetic algorithms

  • Yi Liu
  • Ying Li
  • Yi-jia Cao
  • Chuang-xin Guo
Article

Abstract

In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global single-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems.

Key words

Forward and backward models Fault diagnosis Global single-population master-slave genetic algorithms (GPGAs) Parallel computation 

Document code

CLC number

TM734 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cardozo, E., Talukdar, S.N., 1988. A distributed expert system of fault diagnosis. IEEE Trans. on Power Syst., 3(2):641–646. [doi:10.1109/59.192917]CrossRefGoogle Scholar
  2. Chantler, M., Pogliano, P., Aldea, A., Tornielli, G., Wyatt, T., Jolley, A., 2000. Use of fault-recorder data for diagnosing timing and other related faults in electricity transmission networks. IEEE Trans. on Power Syst., 15(4):1388–1393. [doi:10.1109/59.898117]CrossRefGoogle Scholar
  3. Chin, H.C., 2003. Fault section diagnosis of power system using fuzzy logic. IEEE Trans. on Power Syst., 18(1):245–250. [doi:10.1109/TPWRS.2002.807095]CrossRefGoogle Scholar
  4. Chuang, C.Y., Ke, Y., Chen, Y.L., 2006. Rule-expert knowledge-based Petri net approach for distribution system temperature adaptive feeder reconfiguration. IEEE Trans. on Power Syst., 21(3):1362–1370. [doi:10.1109/TPWRS.2006.876681]CrossRefGoogle Scholar
  5. Dysko, A., McDonald, J.R., Burt, G.M., Goody, J., Gwyn, B., 1999. Integrated Modelling Environment: A Platform for Dynamic Protection Modelling and Advanced Functionality. Proc. IEEE Transmission Distribution Conf., 1:406–411. [doi:10.1109/TDC.1999.755386]Google Scholar
  6. Hu, Z.H., Cai, Y.Z., Li, Y.G., 2005. Data fusion for fault diagnosis using multi-class support vector machines. J. Zhejiang Univ. Sci., 6A(10):1030–1039. [doi:10.1631/jzus.2005.A1030]CrossRefGoogle Scholar
  7. Huang, S.J., 2002. Application of immune-based optimization method for fault-section estimation in a distribution system. IEEE Trans. on Power Del., 17(3):779–784. [doi:10.1109/TPWRD.2002.1022803]CrossRefGoogle Scholar
  8. Huang, Y.C., 2002. Fault section estimation in power systems using a novel decision support system. IEEE Trans. on Power Syst., 17(2):439–444. [doi:10.1109/TPWRS.2002.1007915]CrossRefGoogle Scholar
  9. Liu, L., Logan, K.P., Cartes, D.A., Srivastava, S.K., 2007. Fault detection, diagnostics, and prognostics: software agent solutions. IEEE Trans. on Vehic. Technol., 56(4):1613–1622. [doi:10.1109/TVT.2007.897219]CrossRefGoogle Scholar
  10. Narendra, K.G., Sood, V.K., Khorasani, K., 1998. Application of a Radial Basis Function (RBF) neural network for fault diagnosis in a HVDC system. IEEE Trans. on Power Syst., 13(1):177–183. [doi:10.1109/59.651633]CrossRefGoogle Scholar
  11. Park, Y.M., Kim, G.W., Sohn, J.M., 1997. A Logic Based Expert System, LBES, for Fault Diagnosis of Power System. IEEE Trans. on Power Syst., 12(1):363–369. [doi:10.1109/59.574960]CrossRefGoogle Scholar
  12. Ren, H., Mi, Z.Q., Zhao, H.S., 2005. Power system fault diagnosis by use of encoded Petri net models. Proc. CSEE, 25(20):44–49 (in Chinese).Google Scholar
  13. Sun, Y.M., Jiang, H., Wang, D., 1998. Fault synthetic recognition for an EHV transmission line using a group of neural networks with a time-space property. IEE Proc.-Gener., Transm. Distrib., 145(3):265–270. [doi:10.1049/ip-gtd:19981919]CrossRefGoogle Scholar
  14. Wen, F.S., Chang, C.S., 1996. A New Approach to Fault Section Estimation in Power Systems Based on the Set Covering Theory and a Refined Genetic Algorithm. Proc. 12th Power Systems Computation Conf., Dresden, Germany, 1:358–365.Google Scholar
  15. Wen, F.S., Han, Z.X., 1997. Probabilistic approach for fault section estimation in power systems based upon a refined genetic algorithm. IEE Proc.-Gener., Transm. Distrib., 144(2):160–168. [doi:10.1049/ip-gtd:19970802]CrossRefGoogle Scholar
  16. Zhu, Y.L., Huo, L.M., Lu, J.L., 2006. Bayesian networks-based approach for power systems fault diagnosis. IEEE Trans. on Power Delivery, 21(2):634–639. [doi:10.1109/TPWRD.2005.858774]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.School of Electrical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations