Journal of Zhejiang University-SCIENCE A

, Volume 8, Issue 7, pp 1118–1125 | Cite as

Progress and prospect in electro-Fenton process for wastewater treatment

  • Jiang Cheng-chun 
  • Zhang Jia-fa 
Personal Review


As a novel advanced oxidation process (AOP), electro-Fenton process is powerful for degrading most organic compounds including toxic and non-biodegradable ones, and so has attracted great attention. This paper reviews this process in detail including the mechanism, electrolytic bath, electrode materials, aerations and operation parameters. The application of electro-Fenton method in wastewater treatment is evaluated and summarized. Future work in this field is suggested, and three main directions of new electrode exploitation, development of assisted technologies and mechanistic study should be strengthened.

Key words

Electro-Fenton Hydroxyl radicals Advanced oxidation process (AOP) Refractory wastewater 

CLC number

TQ15 TU992 X5 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bellakhal, N., Oturan, M.A., Oturan, N., Dachraoui, M., 2006. Olive oil mill wastewater treatment by the electro-Fenton process. Environ. Chem., 3(5):345–349. [doi:10.1071/EN05080]CrossRefGoogle Scholar
  2. Boye, B., Dieng, M.M., Brillas, E., 2002. Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods. Environmental Science and Technology, 36(13):3030–3035. [doi:10.1021/es0103391]CrossRefGoogle Scholar
  3. Brillas, E., Casado, J., 2002. Aniline degradation by electro-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere, 47(3): 241–248. [doi:10.1016/S0045-6535(01)00221-1]CrossRefGoogle Scholar
  4. Brillas, E., Mur, E., Casado, J., 1996. Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode. J. Electrochem. Soc., 143(3):L49–L53. [doi:10.1149/1.1836528]CrossRefGoogle Scholar
  5. Brillas, E., Sauleda, R., Casado, J., 1998a. Degradation of 4-chlorophenol by anodic oxidation, electro-Fenton, photoelectro-Fenton, and peroxi-coagulation processes. J. Electrochem. Soc., 145(3):759–765. [doi:10.1149/1.1838342]CrossRefGoogle Scholar
  6. Brillas, E., Mur, E., Sauleda, R., Sànchez, L., Peral, J., Domènech, X., Casado, J., 1998b. Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectron-Fenton processes. Appl. Catal. B: Environ., 16(1):31–42. [doi:10.1016/S0926-3373(97)00059-3]CrossRefGoogle Scholar
  7. Brillas, E., Calpe, J.C., Casado, J., 2000. Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Research, 34(8):2253–2262. [doi:10.1016/S0043-1354(99)00396-6]CrossRefGoogle Scholar
  8. Brillas, E., Boye, B., Sirés, I., Garrido, J.A., Rodríguez, R.M., Arias, C., Cabot, P.L., Comninellis, C., 2004. Electro chemical destruction of cholorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochimica Acta, 49(25): 4487–4496. [doi:10.1016/j.electacta.2004.05.006]CrossRefGoogle Scholar
  9. Casado, J., Fornaguera, J., Galán, M.I., 2005. Mineralization of aromatics in water by sunlight-assisted electro-Fenton technology in a pilot reactor. Environmental Science and Technology, 39(6):1843–1847. [doi:10.1021/es0498787]CrossRefGoogle Scholar
  10. Chen, Z., Chen, X., Zheng, X., Chen, R.Y., Lin, Z.H., Chen, Y.F., Zhang, Y.K., 2002. Influence of pH and current concentration on electrochemical-generated hydroxyl radical for degradation and decolorization of dye wastewater. Research of Environmental Sciences, 15:42–52 (in Chinese).Google Scholar
  11. Edelahi, M.C., Oturan, N., Oturan, M.A., Padellec, Y., Bermond, A., Kacemi, K.E., 2003. Degradation of diuron by the electro-Fenton process. Environ. Chem. Lett., 1(4): 233–236. [doi:10.1007/s10311-003-0052-5]CrossRefGoogle Scholar
  12. Flox, C., Ammar, S., Arias, C., Brillas, E., Vargas-Zavala, A.V., Abdelhedi, R., 2006. Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Appl. Catal. B: Environ., 67(1–2):93–104. [doi:10.1016/j.apcatb.2006.04.020]CrossRefGoogle Scholar
  13. Fockedey, E., Lierde, A.V., 2002. Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes. Water Research, 36(16): 4169–4175. [doi:10.1016/S0043-1354(02)00103-3]CrossRefGoogle Scholar
  14. Gözmen, B., Oturan, M.A., Oturan, N., Erbatur, O., 2003. Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton’s reagent. Environmental Science and Technology, 37(16): 3716–3722. [doi:10.1021/es034011e]CrossRefGoogle Scholar
  15. Guivarch, E., Oturan, N., Oturan, M.A., 2003a. Removal of organophosphorus pesticides from water by electrogenerated Fenton’s reagent. Environ. Chem. Lett., 1(3):165–168. [doi:10.1007/s10311-003-0029-4]CrossRefGoogle Scholar
  16. Guivarch, E., Trevin, S., Lahitte, C., Oturan, M.A., 2003b. Degradation of azo dyes in water by electro-Fenton process. Environ. Chem. Lett., 1(1):38–44. [doi:10.1007/s10311-002-0017-0]CrossRefGoogle Scholar
  17. Han, X., Xia, D., 2004. Study on the treatment of phenol and formaldehyde waste water using Fenton reagent. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 6:25–28 (in Chinese).Google Scholar
  18. He, C., An, T.C., Xiong, Y., Shu, D., Hu, H.L., Zhu, X.H., 2002. Electrochemical degradation of organic wastwater by three-dimensional electrode reactor. Electrochemistry, 8:327–332 (in Chinese).Google Scholar
  19. Kaichouh, G., Oturan, N., Oturan, M.A., Kacemi, K.E., Hourch, A.E., 2004. Degradation of the herbicide imazapyr by Fenton reactions. Environ. Chem. Lett., 2(1):31–33. [doi:10.1007/s10311-004-0060-0]CrossRefGoogle Scholar
  20. Kusvuran, E., Irmak, S., Yavuz, H.I., Samil, A., Erbatur, O., 2005. Comparison of the treatment methods efficiency for decolorization and mineralization of Reactive Black 5 azo dye. Journal of Hazardous Materials, 119(1–3):109–116. [doi:10.1016/j.jhazmat.2004.11.017]CrossRefGoogle Scholar
  21. Lahkimi, A., Oturan, M.A., Oturan, N., Chaouch, M., 2007. Removal of textile dyes from water by the electro-Fenton process. Environ. Chem. Lett., 5(1):35–39. [doi:10.1007/s10311-006-0058-x]CrossRefGoogle Scholar
  22. Oturan, M.A., 2000. An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2,4-D. Journal of Applied Electrochemistry, 30(4):475–482. [doi:10.1023/A:1003994 428571]CrossRefGoogle Scholar
  23. Oturan, M.A., Pinson, J., 1995. Hydroxylation by electrochemically generated OH radicals. Mono- and polyhydroxylation of benzoic acid: products and isomers’ distribution. J. Phy. Chem., 99(38):13948–13954. [doi:10.1021/j100038a029]CrossRefGoogle Scholar
  24. Oturan, M.A., Peiroten, J., Chartrin, P., Acher, A.J., 2000. Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method. Environmental Science and Technology, 34(16):3474–3479. [doi:10.1021/es990901b]CrossRefGoogle Scholar
  25. Oturan, M.A., Oturan, N., Lahitte, C., Trevin, S., 2001. Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent application to the mineralization of an organic micropollutant, pentachlorphenol. Journal of Electroanalytical Chemistry, 507(1–2):96–102. [doi:10.1016/S0022-0728(01)00369-2]CrossRefGoogle Scholar
  26. Pozzo, A.D., Palma, L.D., Merli, C., Petrucci, E., 2005a. An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide. Journal of Applied Electrochemistry, 35(4):413–419. [doi:10.1007/s10800-005-0800-2]CrossRefGoogle Scholar
  27. Pozzo, A.D., Ferrantelli, P., Merli, C., Petrucci, E., 2005b. Oxidation efficiency in the electro-Fenton process. Journal of Applied Electrochemistry, 35(4):391–398. [doi:10.1007/s10800-005-0801-1]CrossRefGoogle Scholar
  28. Qiang, Z.M., 2002. Removal of Selected Hazardous Organic Compounds by Electro-Fenton Oxidation Process. Ph.D Thesis, Proquest Information and Learning Company, the United States, p.10–20.Google Scholar
  29. Shen, Z.M., Yang, J., Hu, X.F., Lei, Y.M., Ji, X.L., Jia, J.P., Wang, W.H., 2005. Dual electrodes oxidation of dye wastewater with gas diffusion cathode. Environmental Science and Technology, 39(6):1819–1826. [doi:10.1021/es049025e]CrossRefGoogle Scholar
  30. Ventura, A., Jacquet, G., Bermond, A., Camel, V., 2002. Electrochemical generation of the Fenton’s reagent: application to atrazine degradation. Water Research, 36(14): 3517–3522. [doi:10.1016/S0043-1354(02)00064-7]CrossRefGoogle Scholar
  31. Wang, A.M., Qu, J.H., Ru, J., Liu, H.J., Ge, J.T., 2005. Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon filber cathode. Dyes and Pigments, 65(3):227–233. [doi:10.1016/j.dyepig. 2004.07.019]CrossRefGoogle Scholar
  32. Xiong, Y.J., Fan, J., Zhu, X.H., 1998. Progress and prospect of research in three-dimension electrode. Industrial Water Treatment, 18:5–8 (in Chinese).Google Scholar
  33. Yuan, S.H., Wang, L.L., Lu, X.H., 2004. Studies on the treatment of simulated nitrophenol wastewater by cathode electro-Fenton method. Industrial Water Treatment, 24:33–36 (in Chinese).Google Scholar
  34. Zhang, F., Li, G.M., Zhao, X.H., Hu, H.K., Huang, J.W., 2004. Study status and progress in wastewater treatment by electro-Fenton method. Industrial Water Treatment, 24:9–13 (in Chinese).Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jiang Cheng-chun 
    • 1
  • Zhang Jia-fa 
    • 2
  1. 1.School of Civil and Environmental EngineeringShenzhen PolytechnicShenzhenChina
  2. 2.College of Civil EngineeringHuaqiao UniversityQuanzhouChina

Personalised recommendations