Journal of Zhejiang University-SCIENCE A

, Volume 8, Issue 2, pp 323–330 | Cite as

A remote control training system for rat navigation in complicated environment

  • Feng Zhou-yan 
  • Chen Wei-dong 
  • Ye Xue-song 
  • Zhang Shao-min 
  • Zheng Xiao-jing 
  • Wang Peng 
  • Jiang Jun 
  • Jin Lin 
  • Xu Zhi-jian 
  • Liu Chun-qing 
  • Liu Fu-xin 
  • Luo Jian-hong 
  • Zhuang Yue-ting 
  • Zheng Xiao-xiang 
Article

Abstract

A remote control system has been developed to deliver stimuli into the rat brain through a wireless micro-stimulator for animal behavior training. The system consists of the following main components: an integrated PC control program, a transmitter and a receiver based on Bluetooth (BT) modules, a stimulator controlled by C8051 microprocessor, as well as an operant chamber and an eight-arm radial maze. The micro-stimulator is featured with its changeable amplitude of pulse output for both constant-voltage and constant-current mode, which provides an easy way to set the proper suitable stimulation intensity for different training. The system has been used in behavior experiments for monitoring and recording bar-pressing in the operant chamber, contriolling rat roaming in the eight-arm maze, as well as navigating rats through a 3D obstacle route. The results indicated that the system worked stably and that the stimulation was effective for different types of rat behavior controls. In addition, the results showed that stimulation in the whisker barrel region of rat primary somatosensory cortex (SI) acted like a cue. The animals can be trained to take different desired turns upon the association between the SI cue stimulation and the reward stimulation in the medial forebrain bundle (MFB).

Key words

Remote control Brain Navigation Stimulator Reward stimulation Whisker 

CLC number

R338 TP8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bear, M.F., Connors, B.W., Paradiso, M.A., 2001. Neuroscience: Exploring the Brain (2nd Ed.). Lippincott Williams & Wilkins, Baltimore, MD.Google Scholar
  2. Hermer-Vazquez, L., Hermer-Vazquez, R., Rybinnik, I., Greebel, G., Keller, R., Xu, S., Chapin, J.K., 2005. Rapid learning and flexible memory in “habit” tasks in rats trained with brain stimulation reward. Physiol. Behav., 84(5):753–759. [doi:10.1016/j.physbeh.2005.03.007]CrossRefGoogle Scholar
  3. Lindner, M.D., Plone, M.A., Francis, J.M., Blaney, T.J., Salamone, J.D., Emerich, D.F., 1997. Rats with partial striatal dopamine depletions exhibit robust and long-lasting behavioral deficits in a simple fixed-ratio bar-pressing task. Behav. Brain Res., 86(1):25–40. [doi:10.1016/S0166-4328(96)02240-1]CrossRefGoogle Scholar
  4. Lou, M., Eschenfelder, C.C., Herdegen, T., Brecht, S., Deuschl, G., 2004. Therapeutic window for use of hyperbaric oxygenation in focal transient ischemia in rats. Stroke, 35(2):578–583. [doi:10.1161/01.STR.0000111599.77426.A0]CrossRefGoogle Scholar
  5. Masino, S.A., 2003. Quantitative comparison between functional imaging and single-unit spiking in rat somatosensory cortex. J. Neurophysiol., 89(3):1702–1712. [doi:10.1152/jn.00860.2002]CrossRefGoogle Scholar
  6. Paxinos, G., Watson, C., 1997. The Rat Brain in Stereotaxic Coordinates (3rd Ed.). Academic Press, San Diego, CA.Google Scholar
  7. Reynolds, J.N., Hyland, B.I., Wickens, J.R., 2001. A cellular mechanism of reward-related learning. Nature, 413(6851):67–70. [doi:10.1038/35092560]CrossRefGoogle Scholar
  8. Romo, R., Hernandez, A., Zainos, A., Brody, C.D., Lemus, L., 2000. Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron, 26(1):273–278. [doi:10.1016/S0896-6273(00)81156-3]CrossRefGoogle Scholar
  9. Simons, D.J., 1978. Response properties of vibrissa units in rat SI somatosensory neocortex. J. Neurophysiol., 41(3):798–820.Google Scholar
  10. Simons, D.J., 1983. Multi-whisker stimulation and its effects on vibrissa units in rat SmI barrel cortex. Brain Res., 276(1):178–182. [doi:10.1016/0006-8993(83)90561-9]CrossRefGoogle Scholar
  11. Song, W.G., Chai, J., Han, T.Z., Yuan, K., 2006. A remote controlled multimode micro-stimulator for freely moving animals. Sheng Li Xue Bao, 58(2):183–188.Google Scholar
  12. Talwar, S.K., Xu, S., Hawley, E.S., Weiss, S.A., Moxon, K.A., Chapin, J.K., 2002. Rat navigation guided by remote control. Nature, 417(6884):37–38. [doi:10.1038/417037.a]CrossRefGoogle Scholar
  13. Tehovnik, E.J., 1996. Electrical stimulation of neural tissue to evoke behavioral responses. J. Neurosci. Methods, 65(1):1–17. [doi:10.1016/0165-0270(95)00131-X]CrossRefGoogle Scholar
  14. Wang, Y., Su, X.C., Wang, M., 2006. A telemetry navigation system for animal-robots. Robot, 28(2):183–186.MathSciNetGoogle Scholar
  15. Xu, S., Talwar, S.K., Hawley, E.S., Li, L., Chapin, J.K., 2004. A multi-channel telemetry system for brain microstimulation in freely roaming animals. J. Neurosci. Methods, 133(1–2):57–63. [doi:10.1016/jjneumeth.2003.09.012]CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Feng Zhou-yan 
    • 1
    • 2
  • Chen Wei-dong 
    • 1
    • 3
  • Ye Xue-song 
    • 1
    • 2
  • Zhang Shao-min 
    • 1
    • 2
  • Zheng Xiao-jing 
    • 1
    • 2
  • Wang Peng 
    • 1
    • 2
  • Jiang Jun 
    • 1
    • 3
  • Jin Lin 
    • 1
    • 3
  • Xu Zhi-jian 
    • 1
    • 3
  • Liu Chun-qing 
    • 1
    • 4
  • Liu Fu-xin 
    • 1
    • 4
  • Luo Jian-hong 
    • 1
    • 4
  • Zhuang Yue-ting 
    • 1
    • 3
  • Zheng Xiao-xiang 
    • 1
    • 2
  1. 1.Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhouChina
  2. 2.College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
  3. 3.College of Computer Science and TechnologyZhejiang UniversityHangzhouChina
  4. 4.School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations