Journal of Zhejiang University SCIENCE B

, Volume 7, Issue 10, pp 817–824 | Cite as

Osteogenic potential of human periosteum-derived progenitor cells in PLGA scaffold using allogeneic serum

  • Zheng Yi-xiong 
  • Ringe Jochen 
  • Liang Zhong 
  • Loch Alexander 
  • Chen Li 
  • Sittinger Michael 


The use of periosteum-derived progenitor cells (PCs) combined with bioresorbable materials is an attractive approach for tissue engineering. The aim of this study was to characterize the osteogenic differentiation of PC in 3-dimensional (3D) poly-lactic-co-glycolic acid (PLGA) fleeces cultured in medium containing allogeneic human serum. PCs were isolated and expanded in monolayer culture. Expanded cells of passage 3 were seeded into PLGA constructs and cultured in osteogenic medium for a maximum period of 28 d. Morphological, histological and cell viability analyses of three-dimensionally cultured PCs were performed to elucidate osseous synthesis and deposition of a calcified matrix. Furthermore, the mRNA expression of type I collagen, osteocalcin and osteonectin was semi-quantitively evaluated by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The fibrin gel immobilization technique provided homogeneous PCs distribution in 3D PLGA constructs. Live-dead staining indicated a high viability rate of PCs inside the PLGA scaffolds. Secreted nodules of neo-bone tissue formation and the presence of matrix mineralization were confirmed by positive von Kossa staining. The osteogenic differentiation of PCs was further demonstrated by the detection of type I collagen, osteocalcin and osteonectin gene expression. The results of this study support the concept that this tissue engineering method presents a promising method for creation of new bone in vivo.

Key words

Tissue engineering Poly-lactic-co-glycolic acid polymer Periosteum-derived progenitor cells 3-dimensional culture 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, U., Lindenhayn, K., Perka, C., 2002. In vitro-cultivation of human periosteum derived cells in bioresorbable polymer-TCP-composites. Biomaterials, 23(11):2303–2310. [doi:10.1016/S0142-9612(01)00364-7]PubMedCrossRefGoogle Scholar
  2. Barry, F.P., Murphy, J.M., 2004. Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol., 36(4):568–584. [doi:10.1016/j.biocel.2003.11.001]PubMedCrossRefGoogle Scholar
  3. Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., Peterson, L., 1994. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med., 331(14):889–895. [doi:10.1056/NEJM199410063311401]PubMedCrossRefGoogle Scholar
  4. Chen, G., Sato, T., Ohgushi, H., Ushida, T., Tateishi, T., Tanaka, J., 2005. Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Biomaterials, 26(15):2559–2566. [doi:10.1016/j.biomaterials.2004.07.034]PubMedCrossRefGoogle Scholar
  5. Chenu, C., Colucci, S., Grano, M., Zigrino, P., Barattolo, R., Zambonin, G., Baldini, N., Vergnaud, P., Delmas, P.D., Zallone, A.Z., 1994. Osteocalcin induces chemotaxis, secretion of matrix proteins, and calcium-mediated intracellular signaling in human osteoclast-like cells. J. Cell Biol., 127(4):1149–1158. [doi:10.1083/jcb.127.4.1149]PubMedCrossRefGoogle Scholar
  6. de Bari, C., Dell’Accio, F., Tylzanowski, P., Luyten, F.P., 2001. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum., 44(8):1928–1942. [doi:10.1002/1529-0131(200108)44:8〈1928::AID-ART331〉3.0.CO;2-P]PubMedCrossRefGoogle Scholar
  7. Derubeis, A.R., Cancedda, R., 2004. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Annals of Biomedical Engineering, 32(1):160–165. [doi:10.1023/B:ABME.0000007800.89194.95]PubMedCrossRefGoogle Scholar
  8. Gröger, A., Klaring, S., Merten, H.A., Holste, J., Kaps, C., Sittinger, M., 2003. Tissue engineering of bone for mandibular augmentation in immunocompetent minipigs: preliminary study. Scand. J. Plast. Reconstr. Surg. Hand Surg., 37(3):129–133. [doi:10.1080/02844310310007728]PubMedCrossRefGoogle Scholar
  9. Ignatius, A., Blessing, H., Liedert, A., Schmidt, C., Neidlinger-Wilke, C., Kaspar, D., Friemert, B., Claes, L., 2005. Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials, 26(3):311–318. [doi:10.1016/j.biomaterials.2004.02.045]PubMedCrossRefGoogle Scholar
  10. Karp, J.M., Sarraf, F., Shoichet, M.S., Davies, J.E., 2004. Fibrin-filled scaffolds for bone-tissue engineering: an in vivo study. J. Biomed. Mater. Res. A, 71(1):162–171. [doi:10.1002/jbm.a.30147]PubMedCrossRefGoogle Scholar
  11. Lennon, P.F., Collard, C.D., Morrissey, M.A., Stahl, G.L., 1996. Complement-induced endothelial dysfunction in rabbits: mechanisms, recovery, and gender differences. Am. J. Physiol., 270(6 Pt 2):H1924–H1932.PubMedGoogle Scholar
  12. Muschler, G.F., Midura, R.J., 2002. Connective tissue progenitors: practical concepts for clinical applications. Clin. Orthop. Relat. Res., 395:66–80. [doi:10.1097/00003086-200202000-00008]PubMedCrossRefGoogle Scholar
  13. Nöth, U., Osyczka, A.M., Tuli, R., Hickok, N.J., Danielson, K.G., Tuan, R.S., 2002. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J. Orthop. Res., 20(5):1060–1069. [doi:10.1016/S0736-0266(02)00018-9]PubMedCrossRefGoogle Scholar
  14. Ouyang, H.W., Goh, J.C., Mo, X.M., Teoh, S.H., Lee, E.H., 2002. The efficacy of bone marrow stromal cell-seeded knitted PLGA fiber scaffold for Achilles tendon repair. Ann. N.Y. Acad. Sci., 961(1):126–129.PubMedCrossRefGoogle Scholar
  15. Peng, H., Huard, J., 2004. Muscle-derived stem cells for musculoskeletal tissue regeneration and repair. Transpl. Immunol., 12(3–4):311–319. [doi:10.1016/j.trim.2003.12.009]PubMedCrossRefGoogle Scholar
  16. Perka, C., Schultz, O., Spitzer, R.S., Lindenhayn, K., Burmester, G.R., Sittinger, M., 2000. Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials, 21(11):1145–1153. [doi:10.1016/S0142-9612(99)00280-X]PubMedCrossRefGoogle Scholar
  17. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., Marshak, D.R., 1999. Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411):143–147. [doi:10.1126/science.284.5411.143]PubMedCrossRefGoogle Scholar
  18. Redlich, A., Perka, C., Schultz, O., Spitzer, R., Häupl, T., Burmester, G.R., Sittinger, M., 1999. Bone engineering on the basis of periosteal cells cultured in polymer fleeces. J. Mater. Sci. Mater. Med., 10(12):767–772. [doi:10.1023/A:1008994715605]PubMedCrossRefGoogle Scholar
  19. Ringe, J., Kaps, C., Burmester, G.R., Sittinger, M., 2002. Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften, 89(8):338–351. [doi:10.1007/s00114-002-0344-9]PubMedCrossRefGoogle Scholar
  20. Ringe, J., Zheng, Y.X., Neumann, K., 2005. Surface marker expression, multilinage potential and chemotaxis of human mesenchymal stem cell and periosteal cells. The International Journal of Artificial Organ, 28(4):336.Google Scholar
  21. Schmelzeisen, R., Schimming, R., Sittinger, M., 2003. Making bone: implant insertion into tissue-engineered bone for maxillary sinus floor augmentation—a preliminary report. J. Craniomaxillofac. Surg., 31(1):34–39.PubMedGoogle Scholar
  22. Sittinger, M., Reitzel, D., Dauner, M., Hierlemann, H., Hammer, C., Kastenbauer, E., Planck, H., Burmester, G.R., Bujia, J., 1996. Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. J. Biomed. Mater. Res., 33(2):57–63. [doi:10.1002/(SICI)1097-4636(199622)33:2〈57::AID-JBM1〉3.0.CO;2-K]PubMedCrossRefGoogle Scholar
  23. Sittinger, M., Hutmacher, D.M., Risbud, M.V., 2004. Current strategies for cell delivery in cartilage and bone regeneration. Curr. Opin. Biotechnol., 15(5):411–418. [doi:10.1016/j.copbio.2004.08.010]PubMedCrossRefGoogle Scholar
  24. Sommer, B., Bickel, M., Hofstetter, W., Wetterwald, A., 1996. Expression of matrix proteins during the development of mineralized tissues. Bone, 19(4):371–380. [doi:10.1016/S8756-3282(96)00218-9]PubMedCrossRefGoogle Scholar
  25. Zuk, P.A., Zhu, M., Ashjian, P., de Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., Hedrick, M.H., 2002. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell, 13(12):4279–4295. [doi:10.1091/mbc.E02-02-0105]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University 2006

Authors and Affiliations

  • Zheng Yi-xiong 
    • 1
  • Ringe Jochen 
    • 2
  • Liang Zhong 
    • 2
  • Loch Alexander 
    • 3
  • Chen Li 
    • 1
  • Sittinger Michael 
    • 2
  1. 1.Department of Surgery, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Tissue Engineering Laboratory, Department of Rheumatology and Clinical ImmunologyCharité-University MedicineBerlinGermany
  3. 3.Department of OtorhinolaryngologyCharité-University MedicineBerlinGermany

Personalised recommendations