Proteomic technology for biomarker profiling in cancer: an update

  • Alaoui-Jamali Moulay A. 
  • Xu Ying-jie 


The progress in the understanding of cancer progression and early detection has been slow and frustrating due to the complex multifactorial nature and heterogeneity of the cancer syndrome. To date, no effective treatment is available for advanced cancers, which remain a major cause of morbidity and mortality. Clearly, there is urgent need to unravel novel biomarkers for early detection.

Most of the functional information of the cancer-associated genes resides in the proteome. The later is an exceptionally complex biological system involving several proteins that function through posttranslational modifications and dynamic intermolecular collisions with partners. These protein complexes can be regulated by signals emanating from cancer cells, their surrounding tissue microenvironment, and/or from the host. Some proteins are secreted and/or cleaved into the extracellular milieu and may represent valuable serum biomarkers for diagnosis purpose. It is estimated that the cancer proteome may include over 1.5 million proteins as a result of posttranslational processing and modifications. Such complexity clearly highlights the need for ultra-high resolution proteomic technology for robust quantitative protein measurements and data acquisition. This review is to update the current research efforts in high-resolution proteomic technology for discovery and monitoring cancer biomarkers.

Key words

Cancer Biomarkers Proteomics 

CLC number



  1. Aebersold, R., Goodlett, D.R., 2001. Mass spectrometry in proteomics. Chem. Rev., 101(2):269–295. [doi:10.1021/cr990076h]PubMedCrossRefGoogle Scholar
  2. Aebersold, R., Mann, M., 2003. Mass spectrometry-based proteomics. Nature, 422(6928):198–207. [doi:10.1038/nature01511]PubMedCrossRefGoogle Scholar
  3. Anderson, N.L., Anderson, N.G., 2002. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics, 1(11):845–867. [doi:10.1074/mcp. R200007-MCP200]PubMedCrossRefGoogle Scholar
  4. Bachelot, T., Ray-Coquard, I., Menetrier-Caux, C., Rastkha, M., Duc, A., Blay, J.Y., 2003. Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br. J. Cancer, 88(11):1721–1726. [doi:10.1038/sj.bjc.6600956]PubMedCrossRefGoogle Scholar
  5. Balmain, A., Gray, J., Ponder, B., 2003. The genetics and genomics of cancer. Nature Genet., 33(Suppl. 3):238–244. [doi:10.1038/ng1107]PubMedCrossRefGoogle Scholar
  6. Bast, R.C.Jr, Badgwell, D., Lu, Z., Marquez, R., Rosen, D., Liu, J., Baggerly, K.A., Atkinson, E.N., Skates, S., Zhang, Z., et al., 2005. New tumor markers: CA125 and beyond. Int. J. Gynecol. Cancer, 15(Suppl. 3):274–281. [doi:10.1111/j.1525-1438.2005.00441.x]PubMedCrossRefGoogle Scholar
  7. Bayer, E.M., Bottrill, A.R., Walshaw, J., Vigouroux, M., Naldrett, M.J., Thomas, C.L., Maule, A.J., 2006. Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics, 6(1):301–311. [doi:10.1002/pmic.200500046]PubMedCrossRefGoogle Scholar
  8. Bichsel, V.E., Liotta, L.A., Petricoin, E.F., 2001. Cancer proteomics: from biomarker discovery to signal pathway profiling. Cancer J., 7:69–78.PubMedGoogle Scholar
  9. Blagoev, B., Ong, S.E., Kratchmarova, I., Mann, M., 2004. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol., 22(9):1139–1145. [doi:10.1038/nbt1005]PubMedCrossRefGoogle Scholar
  10. Boguski, M.S., McIntosh, M.W., 2003. Biomedical informatics for proteomics. Nature, 422(6928):233–237. [doi:10.1038/nature01515]PubMedCrossRefGoogle Scholar
  11. Braun, S., Pantel, K., Muller, P., Janni, W., Hepp, F., Kentenich, C.R., Gastroph, S., Wischnik, A., Dimpfl, T., Kindermann, G., et al., 2000. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N. Engl. J. Med., 342(8):525–533. [doi:10.1056/NEJM200002243420801]PubMedCrossRefGoogle Scholar
  12. Cagney, G., Emili, A. 2002. De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging. Nat. Biotechnol., 20(2):163–170. [doi:10.1038/nbt0202-163]PubMedCrossRefGoogle Scholar
  13. Celis, J.E., Gromov, P., 2003. Proteomics in translational cancer research: toward an integrated approach. Cancer Cell, 3(1):9–15. [doi:10.1016/S1535-6108(02)00242-8]PubMedCrossRefGoogle Scholar
  14. Celis, J.E., Celis, P., Palsdottir, H., Ostergaard, M., Gromov, P., Primdahl, H., Orntoft, T.F., Wolf, H., Celis, A., Gromova, I., 2002. Proteomic strategies to reveal tumor heterogeneity among urothelial papillomas. Mol. Cell Proteomics, 1(4):269–279. [doi:10.1074/mcp.M100031-MCP200]PubMedCrossRefGoogle Scholar
  15. Chakravarti, D.N., Gallagher, S., Chakravarti, B., 2004. Difference gel electrophoresis: application in quantitative proteomics research. Current Proteomics, 1(4):261–271.Google Scholar
  16. Chen, E.I., Hewel, J., Felding-Habermann, B., Yates, J.R.3rd, 2006. Large scale protein profiling by combination of protein fractionation and multidimensional protein identification technology (MudPIT). Mol. Cell Proteomics., 5(1):53–56. [doi:10.1074/mcp.T500013-MCP200]PubMedCrossRefGoogle Scholar
  17. Clarke, C.H., Buckley, J.A., Fung, E.T., 2005. SELDI-TOF-MS proteomics of breast cancer. Clin. Chem. Lab. Med., 43(12):1314–1320. [doi:10.1515/CCLM.2005.225]PubMedCrossRefGoogle Scholar
  18. Conrads, T.P., Hood, B.L., Petricoin III, E.F., Liotta, L.A., Veenstra, T.D., 2005. Cancer proteomics: many technologies, one goal. Expert Rev. Proteomics, 2(5):693–703. [doi:10.1586/14789450.2.5.693]PubMedCrossRefGoogle Scholar
  19. Corder, E.H., Guess, H.A., Hulka, B.S., Friedman, G.D., Sadler, M., Vollmer, R.T., Lobaugh, B., Drezner, M.K., Vogelman, J.H., Orentreich, N., 1993. Vitamin D and prostate cancer: a prediagnostic study with stored sera. Cancer Epidemiol., Biomarkers & Prev., 2:467–472.Google Scholar
  20. Durr, E., Yu, J., Krasinska, K.M., Carver, L.A., Yates, J.R., Testa, J.E., Oh, P., Schnitzer, J.E., 2004. Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat. Biotechnol., 22(8):985–992. [doi:10.1038/nbt993]PubMedCrossRefGoogle Scholar
  21. Ebanks, R.O., Goguen, M., McKinnon, S., Pinto, D.M., Ross, N.W., 2005. Identification of the major outer membrane proteins of Aeromonas salmonicida. Dis. Aquat. Organ., 68(1):29–38.PubMedGoogle Scholar
  22. Ebanks, R.O., Chisholm, K., McKinnon, S., Whiteway, M., Pinto, D.M., 2006. Proteomic analysis of Candida albicans yeast and hyphal cell wall and associated proteins. Proteomics, 6(7):2147–2156. [doi:10.1002/pmic.200500100]PubMedCrossRefGoogle Scholar
  23. Guzzetta, A.W., Chien, A.S., 2005. A double-vented tetraphasic continuous column approach to MuDPIT analysis on long capillary columns demonstrates superior proteomic coverage. J. Proteome Res., 4(6):2412–2419. [doi:10.1021/pr050209h]PubMedCrossRefGoogle Scholar
  24. Hammond, M.E., Taube, S.E., 2002. Issues and barriers to development of clinically useful tumor markers: a development pathway proposal. Semin. Oncol., 29(3):213–221. [doi:10.1053/sonc.2002.32896]PubMedCrossRefGoogle Scholar
  25. Hanash, S., 2001. 2-D or not 2-D: is there a future for 2-D gels in proteomics? Insights from the York proteomics meeting. Proteomics, 1:635–637.PubMedGoogle Scholar
  26. Hanash, S., 2003. Disease proteomics. Nature, 422(6928): 226–232. [doi:10.1038/nature01514]PubMedCrossRefGoogle Scholar
  27. Henderson, N.A., Steele, R.J., 2005. SELDI-TOF proteomic analysis and cancer detection. Surgeon, 3(6):383–390.PubMedCrossRefGoogle Scholar
  28. Hoheisel, J.D., 2006. Microarray technology: beyond transcript profiling and genotype analysis. Nat. Rev. Genet., 7(3):200–210. [doi:10.1038/nrg1809]PubMedCrossRefGoogle Scholar
  29. Jessani, N., Niessen, S., Wei, B.Q., Nicolau, M., Humphrey, M., Ji, Y., Han, W., Noh, D.Y., Yates, J.R.3rd, Jeffrey, S.S., et al., 2005. A streamlined platform for high-content functional proteomics of primary human specimens. Nat. Methods, 2(9):691–697. [doi:10.1038/nmeth778]PubMedCrossRefGoogle Scholar
  30. Kachman, M.T., Wang, H., Schwartz, D.R., Cho, K.R., Lubman, D.M., 2002. A 2-D liquid separations/mass mapping method for interlysate comparison of ovarian cancers. Anal. Chem., 74(8):1779–1791. [doi:10.1021/ac011159c]PubMedCrossRefGoogle Scholar
  31. Kaji, H., Saito, H., Yamauchi, Y., Shinkawa, T., Taoka, M., Hirabayashi, J., Kasai, K., Takahashi, N., Isobe, T., 2003. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat. Biotechnol., 21(6):667–672. [doi:10.1038/nbt829]PubMedCrossRefGoogle Scholar
  32. Khodavirdi, A.C., Song, Z., Yang, S., Zhong, C., Wang, S., Wu, H., Pritchard, C., Nelson, P.S., Roy-Burman, P., 2006. Increased expression of osteopontin contributes to the progression of prostate cancer. Cancer Res., 66(2):883–888. [doi:10.1158/0008-5472.CAN-05-2816]PubMedCrossRefGoogle Scholar
  33. Knezevic, V., Leethanakul, C., Bichsel, V.E., Worth, J.M., Prabhu, V.V., Gutkind, J.S., Liotta, L.A., Munson, P.J., Petricoin III, E.F., Krizman, D.B., 2001. Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics, 1(10):1271–1278. [doi:10.1002/1615-9861(200110)1:10<1271::AID-PROT1271>3.0.CO;2-6]PubMedCrossRefGoogle Scholar
  34. Kozak, K.R., Su, F., Whitelegge, J.P., Faull, K., Reddy, S., Farias-Eisner, R., 2005. Characterization of serum bio-markers for detection of early stage ovarian cancer. Proteomics, 5(17):4589-4596. [doi:10.1002/pmic.200500093]Google Scholar
  35. Lilley, K.S., Friedman, D.B., 2004. All about DIGE: quantification technology for differential-display 2D-gel proteomics. Exp. Rev. Proteomics, 1(4):401–409. [doi:10.1586/14789450.1.4.401]CrossRefGoogle Scholar
  36. Liotta, L.A., Petricoin, E.F., 2006. Serum peptidome for cancer detection: spinning biologic trash into diagnostic gold. J. Clin. Invest., 116(1):26–30. [doi:10.1172/JCI27467]PubMedCrossRefGoogle Scholar
  37. Ludwig, J.A., Weinstein, J.N., 2005. Biomarkers in Cancer Staging, Prognosis and Treatment Selection. Nature Reviews Cancer, 5(11):845–856. [doi:10.1038/nrc1739]PubMedCrossRefGoogle Scholar
  38. Masselon, C., Pasa-Tolic, L., Tolic, N., Anderson, G.A., Bogdanov, B., Vilkov, A.N., Shen, Y., Zhao, R., Qian, W.J., Lipton, M.S., et al., 2005. Targeted comparative proteomics by liquid chromatography-tandem fourier ion cyclotron resonance mass spectrometry. Anal. Chem., 77(2):400–406. [doi:10.1021/ac049043e]PubMedCrossRefGoogle Scholar
  39. McCormack, A.L., Schieltz, D.M., Goode, B., Yang, S., Barnes, G., Drubin, D., Yates, J.R.3rd, 1997. Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-Femtomole level. Anal. Chem., 69(4):767–776. [doi:10.1021/ac960799q]PubMedCrossRefGoogle Scholar
  40. Melanson, J.E., Chisholm, K.A., Pinto, D.M., 2006. Targeted comparative proteomics by liquid chromatography/matrix-assisted laser desorption/ionization triple-quadrupole mass spectrometry. Rapid Commun. Mass Spectrom., 20(5):904–910. [doi:10.1002/rcm.2391]PubMedCrossRefGoogle Scholar
  41. Menard, C., Johann, D., Lowenthal, M., Muanza, T., Sproull, M., Ross, S., Gulley, J., Petricoin, E., Coleman, C.N., Whiteley, G., et al., 2006. Discovering clinical bio-markers of ionizing radiation exposure with serum proteomic analysis. Cancer Res., 66(3):1844–1850. [doi:10.1158/0008-5472.CAN-05-3466]PubMedCrossRefGoogle Scholar
  42. Moshkovskii, S.A., Serebryakova, M.V., Kuteykin-Teplyakov, K.B., Tikhonova, O.V., Goufman, E.I., Zgoda, V.G., Taranets, I.N., Makarov, O.V., Archakov, A.I., 2005. Ovarian cancer marker of 11.7 kDa detected by proteomics is a serum amyloid A1. Proteomics, 5(14):3790–3797. [doi:10.1002/pmic.200401205]PubMedCrossRefGoogle Scholar
  43. Nemeth-Cawley, J.F., Tangarone, B.S., Rouse, J.C., 2003. “Top Down” characterization is a complementary technique to peptide sequencing for identifying protein species in complex mixtures. J. Proteome Res., 2(5):495–505. [doi:10.1021/pr034008u]PubMedCrossRefGoogle Scholar
  44. Nishizuka, S., Charboneau, L., Young, L., Major, S., Reinhold, W.C., Waltham, M., Kouros-Mehr, H., Bussey, K.J., Lee, J.K., Espina, V., et al., 2003. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc. Natl. Acad. Sci. (USA), 100:14229–14234.CrossRefGoogle Scholar
  45. Ong, S.E., Mann, M., 2005. Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol., 1(5): 252–262. [doi:10.1038/nchembio736]PubMedCrossRefGoogle Scholar
  46. Orchekowski, R., Hamelinck, D., Li, L., Gliwa, E., van-Brocklin, M., Marrero, J.A., Vande, Woude, G.F., Feng, Z., Brand, R., Haab, B.B., 2005. Antibody microarray profiling reveals individual and combined serum proteins associated with pancreatic cancer. Cancer Res., 65(23):11193–11202. [doi:10.1158/0008-5472.CAN-05-1436]PubMedCrossRefGoogle Scholar
  47. Ozier, O., Amin N., Ideker, T., 2003. Global architecture of genetic interactions on the protein network. Nat. Bio-technol., 21(5):490–491.CrossRefGoogle Scholar
  48. Paweletz, C.P., Liotta, L.A., Petricoin, E.F., 2001. New technologies for biomarker analysis of prostate cancer progression: laser capture microdissection and tissue proteomics. Urology, 57(4):160–163. [doi:10.1016/S0090-4295(00)00964-X]PubMedCrossRefGoogle Scholar
  49. Pawlik, T.M., Hawke, D.H., Liu, Y., Krishnamurthy, S., Fritsche, H., Hunt, K.K., Kuerer, H.M., 2006. Proteomic analysis of nipple aspirate fluid from women with early-stage breast cancer using isotope-coded affinity tags and tandem mass spectrometry reveals differential expression of vitamin D binding protein. BMC Cancer, 6(1):68.PubMedCrossRefGoogle Scholar
  50. Petricoin, E.F., Zoon, K.C., Kohn, E.C., Barrett, J.C., Liotta, L.A., 2002a. Clinical proteomics: translating benchside promise into bedside reality. Nature Rev. Drug Discov., 1(9):683–695. [doi:10.1038/nrd891]CrossRefGoogle Scholar
  51. Petricoin III, E., Ardekani, A., Hitt, B., Levine, P., Fusaro, V., Steinberg, S., Mills, G., Simone, C., Fishman, D., Kohn, E., et al., 2002b. Use of proteomic patterns in serum to identify ovarian cancer. The Lancet, 359(9306):572–577. [doi:10.1016/S0140-6736(02)07746-2]CrossRefGoogle Scholar
  52. Petricoin, E.F., Ornstein, D.K., Liotta, L.A., 2004. Clinical proteomics: applications for prostate cancer biomarker discovery and detection. Urol. Oncol., 22(4):322–328.PubMedGoogle Scholar
  53. Phizicky, E., Bastiaens, P.I.H., Zhu, H., Snyder, M., Fields, S., 2003. Protein analysis on a proteomic scale. Nature, 422(6928):208–215. [doi:10.1038/nature01512]PubMedCrossRefGoogle Scholar
  54. Pusztai, L., Gianni, L., 2004. Technology insight: emerging techniques to predict response to preoperative chemotherapy in breast cancer. Nat. Clin. Pract. Oncol., 1(1):44–50. [doi:10.1038/ncponc0025]PubMedCrossRefGoogle Scholar
  55. Ramus, C., de Peredo, A.G., Dahout, C., Gallagher, M., Garin, J., 2006. An optimized strategy for ICAT quantification of membrane proteins. Mol. Cell Proteomics., 5(1):68–78. [doi:10.1074/mcp.M500205-MCP200]PubMedCrossRefGoogle Scholar
  56. Ricolleau, G., Charbonnel, C., Lode, L., Loussouarn, D., Joalland, M.P., Bogumil, R., Jourdain, S., Minvielle, S., Campone, M., Deporte-Fety, R., et al., 2006. Surface-enhanced laser desorption/ionization time of flight mass spectrometry protein profiling identifies ubiquitin and ferritin light chain as prognostic biomarkers in node-negative breast cancer tumors. Proteomics, 6(6):1963–1975. [doi:10.1002/pmic.200500283]PubMedCrossRefGoogle Scholar
  57. Righetti, P.G., Castagna, A., Herbert, B., Reymond, F., Rossier, J.S., 2003. Prefractionation techniques in proteome analysis. Proteomics, 3(8):1397–1407. [doi:10.1002/pmic.200300472]PubMedCrossRefGoogle Scholar
  58. Schrimpf, S.P., Meskenaite, V., Brunner, E., Rutishauser, D., Walther, P., Eng, J., Aebersold, R., Sonderegger, P., 2005. Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics, 5(10):2531–2541. [doi:10.1002/pmic.200401198]PubMedCrossRefGoogle Scholar
  59. Shadforth, I.P., Dunkley, T.P., Lilley, K.S., Bessant, C., 2005. i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics, 6(1):145. [doi:10.1186/1471-2164-6-145]PubMedCrossRefGoogle Scholar
  60. Shen, Y., Strittmatter, E.F., Zhang, R., Metz, T.O., Moore, R.J., Li, F., Udseth, H.R., Smith, R.D., Unger, K.K., Kumar, D., et al., 2005. Making broad proteome protein measurements in 1∼5 min using high-speed RPLC separations and high-accuracy mass measurements. Anal. Chem., 77(23):7763–7773. [doi:10.1021/ac051257o]PubMedCrossRefGoogle Scholar
  61. Sidransky, D., 2002. Emerging molecular markers of cancer. Nature Rev. Cancer, 2(3):210–219. [doi:10.1038/nrc755]CrossRefGoogle Scholar
  62. Staunton, J.E., Slonim, D.K., Coller, H.A., Tamayo, P., Angelo, M.J., Park, J., Scherf, U., Lee, J.K., Reinhold, W.O., Weinstein, J.N., Mesirov, J.P., et al., 2001. Chemosensitivity prediction by transcriptional profiling. Proc. Natl. Acad. Sci. (USA), 98:10787–10792.CrossRefGoogle Scholar
  63. Tyers, M., Mann, M., 2003. From genomics to proteomics. Nature, 422(6928):193–197. [doi:10.1038/nature01510]PubMedCrossRefGoogle Scholar
  64. van de Vijver, M.J., He, Y.D., van′t Veer, L.J., Dai, H., Hart, A.A., Voskuil, D.W., Schreiber, G.J., Peterse, J.L., Roberts, C., Marton, M.J., et al., 2002. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med., 347(25):1999–2009. [doi:10.1056/NEJMoa021967]PubMedCrossRefGoogle Scholar
  65. van′t Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., et al., 2002. Gene-expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871):530–536. [doi:10.1038/415530a]CrossRefGoogle Scholar
  66. Wang, H., Clouthier, S.G., Galchev, V., Misek, D.E., Duffner, U., Min, C.K., Zhao, R., Tra, J., Omenn, G.S., Ferrara, J.L., et al., 2005. Intact-protein-based high-resolution three-dimensional quantitative analysis system for proteome profiling of biological fluids. Molecular & Cellular Proteomics, 4(5):618–625. [doi:10.1074/mcp.M400126-MCP200]CrossRefGoogle Scholar
  67. Washburn, M.P., Ulaszek, R.R., Yates, J.R.3rd, 2003. Reproducibility of quantitative proteomic analyses of complex biological mixtures by multidimensional protein identification technology. Anal. Chem., 75(19):5054–5061. [doi:10.1021/ac034120b]PubMedCrossRefGoogle Scholar
  68. Wolters, D.A., Washburn, M.P., Yates, J.R.III., 2001. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem., 73(23):5683–5690. [doi:10.1021/ac010617e]PubMedCrossRefGoogle Scholar
  69. Wu, C.C., MacCoss, M.J., Howell, K.E., Yates, J.R.3rd, 2003. A method for the comprehensive proteomic analysis of membrane proteins. Nat. Biotechnol., 21(5):532–538. [doi:10.1038/nbt819]PubMedCrossRefGoogle Scholar
  70. Wu, W.W., Wang, G., Baek, S.J., Shen, R.F., 2006. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel-or LC-MALDITOF/TOF. J. Proteome Res., 5(3):651–658. [doi:10.1021/pr050405o]PubMedCrossRefGoogle Scholar
  71. Wulfkuhle, J.D., Liotta, L.A., Petricoin, E.F., 2003. Proteomic applications for the early detection of cancer. Nature Rev. Cancer, 3(4):267–275. [doi:10.1038/nrc1043]CrossRefGoogle Scholar
  72. Ye, B., Cramer, D.W., Skates, S.J., Gygi, S.P., Pratomo, V., Fu, L., Horick, N.K., Licklider, L.J., Schorge, J.O., Berkowitz, R.S., et al., 2003. Haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer: identification and characterization using proteomic profiling and mass spectrometry. Clin. Cancer Res., 9(8):2904–2911.PubMedGoogle Scholar
  73. Yu, K.H., Rustgi, A.K., Blair, I.A., 2005. Characterization of proteins in human pancreatic cancer serum using differential gel electrophoresis and tandem mass spectrometry. J. Proteome Res., 4(5):1742–1751. [doi:10.1021/pr050174l]PubMedCrossRefGoogle Scholar
  74. Zhang, Z., Bast, R.C.Jr., Yu, Y., Li, J., Sokoll, L.J., Rai, A.J., Rosenzweig, J.M., Cameron, B., Wang, Y.Y., Meng, X.Y., et al., 2004. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res., 64(16):5882–5890. [doi:10.1158/0008-5472.CAN-04-0746]PubMedCrossRefGoogle Scholar
  75. Ziauddin, J., Sabatini, D.M., 2001. Microarrays of cells expressing defined cDNAs. Nature, 411(6833):107–110. [doi:10.1038/35075114]PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University 2006

Authors and Affiliations

  • Alaoui-Jamali Moulay A. 
    • 1
  • Xu Ying-jie 
    • 1
  1. 1.Lady Davis Institute for Medical Research and Segal Comprehensive Cancer Center of the Sir Mortimer B. Davis Jewish General Hospital, Department of Oncology and MedicineMcGill UniversityMontrealCanada

Personalised recommendations