Journal of Zhejiang University SCIENCE B

, Volume 7, Issue 1, pp 34–37 | Cite as

Culture of Spirulina platensis in human urine for biomass production and O2 evolution

  • Feng Dao-lun 
  • Wu Zu-cheng 
Science Letters


Attempts were made to culture Spirulina platensis in human urine directly to achieve biomass production and O2 evolution, for potential application to nutrient regeneration and air revitalization in life support system. The culture results showed that Spirulina platensis grows successfully in diluted human urine, and yields maximal biomass at urine dilution ratios of 140∼240. Accumulation of lipid and decreasing of protein occurred due to N deficiency. O2 release rate of Spirulina platensis in diluted human urine was higher than that in Zarrouk medium.

Key words

Spirulina platensis Human urine Biomass production O2 evolution Life support system 

Document code

CLC number

X172 V444.3 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. APHA (American Public Health Association), AWWA (American Water Works Association), WEF (Water pollution Control Federation), 1995. Standard Methods for Water and Wastewater Examination. Washington DC.Google Scholar
  2. Carvalho, J.C.M., Francisco, F.R., Almeida, K.A., Sato, S., Converti, A., 2004. Cultivation of Arthrospira (Spirulina) platensis (cyanophuceae) by fed-batch addition of ammonia chloride at exponentially increasing feeding rates. J. Phycol., 40:589–597.Google Scholar
  3. Ciferri, O., Tiboni, O., 1985. The biochemistry and industrial potential of Spirulina. Annu. Rev. Microbiol., 89:503–526. [doi:10.1146/annurev.mi.39.100185.002443]Google Scholar
  4. Gitelson, J.I., Rodicheva, E.K., 1993. Self-Restoration a Specific Feature of Biological Life Support Systems. SAE Technical Paper Series No. 961495, 26th International Conference on Environmental Systems 8-11, California.Google Scholar
  5. Gódia, F., Albiol, J., Montesinos, J.L., Pérez, J., Creus, N., Cabello, F., Mengual, X., Montras, A., Lasseur, C., 2002. MELISSA: a loop of interconnected bioreactors to develop life support in Space. J. Biotechnol., 99:319–330. [doi:10.1016/S0168-1656(02)00222-5]PubMedGoogle Scholar
  6. Gordon, R., 1982. Essentials of Human Physiology, 2nd Ed. Year Book Medical Publishers, Chicago.Google Scholar
  7. Gros, J.B., Poughon, L., Lasseur, C., Tikhomirov, A.A., 2003. Recycling efficiencies of C, H, O, N, S and P elements in a biological life support system based on microorganisms and higher plants. Adv. Space Res., 31(1):195–199. [doi:10.1016/S0273-1177(02)00739-1]PubMedGoogle Scholar
  8. Larsen, T.A., Peters, I., Alder, A., Eggen, R., Maurer, M., Muncke, J., 2001. Re-engineering the toilet for sustainable wastewater management. Environ. Sci. Technol., 35(9):192A–197A.PubMedGoogle Scholar
  9. Ogbonna, J.C., Yada, H., Tanaka, H., 1995. Light supply coefficient: a new engineering parameter for photobioreactor design. J. Fermen. Bioeng., 80(4):369–376. [doi:10.1016/0922-338X(95)94206-7]Google Scholar
  10. Ritchie, R.J., Prvan, T., 1996. A simulation study on designing experiments to measure the K m of Michaelis-Menten kinetics curves. J. Theor. Biol., 178:239–254. [doi:10.1006/jtbi.1996.0023]CrossRefGoogle Scholar
  11. Sullivan, D.M., Carpenter, D.E., 1993. Methods of Analysis for Nutrition Labeling. AOAC International, Arlington, VA, p.85–104.Google Scholar
  12. Volker, B., Frank, P., 2001. Aquatic modules for bioregenerative life support system based on the C.E.B.A.S biotechnology. Acta Astronaut., 48:287–297. [doi:10.1016/S0094-5765(01)00025-X]Google Scholar

Copyright information

© Zhejiang University 2006

Authors and Affiliations

  • Feng Dao-lun 
    • 1
  • Wu Zu-cheng 
    • 1
  1. 1.Department of Environmental EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations