Journal of Zhejiang University-SCIENCE A

, Volume 7, Issue 12, pp 1961–1967 | Cite as

The Moore’s Law for photonic integrated circuits

  • Thylén L. 
  • He Sailing 
  • Wosinski L. 
  • Dai Daoxin 
Science Letters


We formulate a “Moore’s law” for photonic integrated circuits (PICs) and their spatial integration density using two methods. One is decomposing the integrated photonics devices of diverse types into equivalent basic elements, which makes a comparison with the generic elements of electronic integrated circuits more meaningful. The other is making a complex component equivalent to a series of basic elements of the same functionality, which is used to calculate the integration density for functional components realized with different structures. The results serve as a benchmark of the evolution of PICs and we can conclude that the density of integration measured in this way roughly increases by a factor of 2 per year. The prospects for a continued increase of spatial integration density are discussed.

Key words

Moore’s Law Photonic integrated circuit (PIC) Photonic lightwave circuit (PLC) Photonic integration density Photonic filters Photonic multiplexing 

CLC number



  1. Adar, R., Henry, C.H., Dragone, C., Kistler, R.C., Milbrodt, M.A., 1993. Broad-band array multiplexers made with silica waveguides on silicon. J. Lightwave Technol., 11(2):212–219. [doi:10.1109/50.212529]CrossRefGoogle Scholar
  2. Bach, H.G., Umbach, A., van Waasen, S., Bertenburg, R.M., 1996. Ultrafast monolithically integrated InP-based photoreceiver. OEIC-design, fabrication, and system application. IEEE Journal of Selected Topics in Quantum Electronics, 2(2):418–422. [doi:10.1109/2944.577404]CrossRefGoogle Scholar
  3. Barbarin, Y., Leijtens, X.J.M., Bente, E.A.J.M., Louzao, C.M., Kooiman, J.R., Smit, M.K., 2004. Extremely small AWG demultiplexer fabricated on InP by using a double-etch process. IEEE Photonics Technol. Lett., 16(11):2478–2480. [doi:10.1109/LPT.2004.835217]CrossRefGoogle Scholar
  4. Bissessur, H., Gaborit, F., Martin, B., Ripoche, G., 1995. Polarisation-independent phased-array demultiplexer on InP with high fabrication tolerance. Electron. Lett., 31(16):1372–1373. [doi:10.1049/el:19950891]CrossRefGoogle Scholar
  5. Bissessur, H., Pagnod-Rossiaux, P., Mestric, R., Martin, B., 1996. Extremely small polarization independent phased-array demultiplexers on InP. IEEE Photonics Technol. Lett., 8(4):554–556. [doi:10.1109/68.491224]CrossRefGoogle Scholar
  6. Bozhevolnyi, S.I., Kov, V.S., Devaux, E., Laluet, J.Y., Ebbesen, T.W., 2006. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 440(7083):508–511. [doi:10.1038/nature04594]CrossRefGoogle Scholar
  7. Cremer, C., Erneis, N., Schier, M., Heise, G., Ebbinghaus, G., Stoll, L., 1992. Grating spectrograph integrated with photodiode array in InGaAsP/InGaAs/InP. IEEE Photonics Technol. Lett., 4(1):108–110. [doi:10.1109/68.124893]CrossRefGoogle Scholar
  8. Dai, D.X., Liu, L., Wosinski, L., He, S., 2006. Design and fabrication of an ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides. Electron. Lett., 42(7):400–402. [doi:10.1049/el:20060157]CrossRefGoogle Scholar
  9. de Peralta, L.G., Bernussi, A.A., Frisbie, S., Gale, R., Temkin, H., 2003. Reflective arrayed waveguide grating multiplexer. IEEE Photonics Technol. Lett., 15(10):1398–1400. [doi:10.1109/LPT.2003.818223]CrossRefGoogle Scholar
  10. den Besten, J.H., Dessens, M.P., Herben, C.G.P., Leijtens, X.J.M., Groen, F.H., Leys, M.R., Smit, M.K., 2002. Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process. IEEE Photonics Technol. Lett., 14(1):62–64. [doi:10.1109/68.974162]CrossRefGoogle Scholar
  11. Dumon, P., Bogaerts, W., van Thourhout, D., Dumon, P., Bogaerts, W., van Thourhout, D., Taillaert, D., Wiaux, V., Beckx, S., Wouters, J., Baets, R., 2004. Wavelength-selective Components in SOI Photonic Wires Fabricated with Deep UV Lithography. 1st IEEE International Conference on Group IV Photonics, p.28–30.Google Scholar
  12. Dumon, P., Bogaerts, W., Wiaux, V., Wouters, J., Beckx, S., van Campenhout, J., Taillaert, D., Luyssaert, B., Bienstman, P., van Thourhout, D., Baets, R., 2004. Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photonics Technol. Lett., 16(5):1328–1330. [doi:10.1109/LPT.2004.826025]CrossRefGoogle Scholar
  13. Granestrand, P., Stoltz, B., Thylén, L., Bergvall, K., Doldissen, W., Heidrich, H., Hoffmann, D., 1986. Strictly non-blocking 8×8 integrated optical switch matrix. Electron. Lett., 22:816–817.CrossRefGoogle Scholar
  14. Gustavsson, M., Lagerstrom, B., Thylén, L., Janson, M., Lundgren, L., Morner, A.C., Rask, M., Stoltz, B., 1992. Monolithically Integrated 4×4 Laser Amplifier Gate Switch Arrays. Proc. OSA Topical Meeting on Optical Amplifiers and their Applications, paper PD9.Google Scholar
  15. Hibino, Y., 2002. Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs. IEEE Journal of Selected Topics in Quantum Electronics, 8(6):1090–1101. [doi:10.1109/JSTQE.2002.805965]CrossRefGoogle Scholar
  16. Hida, Y., Hibino, Y., Itoh, M., Sugita, A., Himeno, A., 2000. Fabrication of low-loss and polarisation insensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5% waveguides. Electron. Lett., 36(9):820–821. [doi:10.1049/el:20000598]CrossRefGoogle Scholar
  17. Hida, Y., Hibino, Y., Kitoh, T., Inoue, Y., Itoh, M., Shibata, T., Sugita, A., Himeno, A., 2001. 400-channel arrayed-waveguide grating with 25 GHz spacing using 1.5%-Δ waveguides on 6-inch Si wafer. Electron. Lett., 37(9):576–577. [doi:10.1049/el:20010388]CrossRefGoogle Scholar
  18. Inoue, K., Takato, N., Toba, H., Kawachi, M., 1988. A four-channel optical waveguide multi/demultiplexer for 5-GHz spaced optical FDM transmission. J. Lightwave Technol., 6(2):339–345. [doi:10.1109/50.4008]CrossRefGoogle Scholar
  19. Inoue, Y., Himeno, A., Moriwaki, K., Kawachi, M., 1995. Silica-based arrayed-waveguide grating circuit as optical splitter/router. Electron. Lett., 31(9):726–727. [doi:10.1049/el:19950497]CrossRefGoogle Scholar
  20. Ishii, H., Sanjoh, H., Kohtoku, M., Oku, S., Kadota, Y., 1998. Monolithically Integrated WDM Channel Selectors on InP Substrates. 24th European Conference on Optical Communication, p.329–330.Google Scholar
  21. Ishii, M., Takagi, A., Hida, Y., Itoh, M., Kamei, S., Saida, T., Hibino, Y., Sugita, A., Kitagawa, T., 2001. Low-loss fibre-pigtailed 256 channel arrayed-waveguide grating multiplexer using cascaded laterally-tapered waveguides. Electron. Lett., 37(23):1401–1402. [doi:10.1049/el:20010963]CrossRefGoogle Scholar
  22. Janz, S., Balakrishnan, A., Charbonneau, S., Cheben, P., Cloutier, M., Delage, A., Dossou, K., Erickson, L., Gao, M., Krug, P.A., Lamontagne, B., Packirisamy, M., Pearson, M., Xu, D.X., 2004. Planar waveguide echelle gratings in silica-on-silicon. IEEE Photonics Technol. Lett., 16(2):503–505. [doi:10.1109/LPT.2003.823139]CrossRefGoogle Scholar
  23. Kamei, S., Inoue, Y., Mizuno, T., Iemura, K., Shibata, T., Kaneko, A., Takahashi, H., 2005. Extremely low-loss 1.5%-D 32-channel athermal arrayed-waveguide grating multi/demultiplexer. Electron. Lett., 41(9):544–546. [doi:10.1049/el:20050319]CrossRefGoogle Scholar
  24. Kohtoku, M., Sanjoh, H., Oku, S., Kadota, Y., Yoshikuni, Y., 1997. InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk. Electron. Lett., 33(21):1786–1787. [doi:10.1049/el:19971194]CrossRefGoogle Scholar
  25. Luff, B.J., Tsatourian, V., Stopford, P.A.L., Roberts, S.W., Drake, J.P., Fuller, S.A., Asghari, M., 2003. Planar reflection grating wavelength filters in silicon. J. Lightwave Technol., 21(12):3387–3391. [doi:10.1109/JLT.2003.820046]CrossRefGoogle Scholar
  26. Maru, K., Abe, Y., Ito, M., Ishikawa, H., Himi, S., Uetsuka, H., Mizumoto, T., 2005. 2.5%-silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core. IEEE Photonics Technol. Lett., 17(11):2325–2327. [doi:10.1109/LPT.2005.857233]CrossRefGoogle Scholar
  27. Menezo, S., Talneau, A., Delorme, F., Grosmaire, S., 1999. 10-wavelength 200-GHz channel spacing emitter integrating DBR Lasers with a PHASAR on InP for WDM applications. IEEE Photonics Technol. Lett., 11(1):785. [doi:10.1109/68.769707]CrossRefGoogle Scholar
  28. Moore, G.E., 1965. Moore’s Law. Electronics, 38:113–118.Google Scholar
  29. Okamoto, K., Moriwaki, K., Suzuki, S., 1995. Fabrication of 64×64 arrayed-waveguide grating multiplexer on silicon. Electron. Lett., 31(3):184–186. [doi:10.1049/el:19950133]CrossRefGoogle Scholar
  30. Okamoto, K., Syuto, K., Takahashi, H., Ohmori, Y., 1996. Fabrication of 128-channel arrayed waveguide grating multiplexer with 25 GHz channel spacing. Electron. Lett., 32(16):1474–1476. [doi:10.1049/el:19961008]CrossRefGoogle Scholar
  31. Sasaki, K., Ohno, F., Motegi, A., Baba, T., 2005. Arrayed waveguide grating of 70 μ×60 μm size based on Si photonic wire waveguides. Electron. Lett., 41(14):801–802. [doi:10.1049/el:20051541]CrossRefGoogle Scholar
  32. Smit, M., 2005. Trends in Passive Devices for Photonic Integration. Proceedings of Opto Electronics and Communication Conference (OECC 2005), Seoul, South Korea, p.848–849.Google Scholar
  33. Soole, J.B.D., Scherer, A., Leblanc, H.P., Andreadakis, N.C., Bhat, R., Koza, M.A., 1991. Monolithic InP-based grating spectrometer for wavelength-division multiplexed systems at 1.5 pm. Electron. Lett., 27(2):132–134.CrossRefGoogle Scholar
  34. Soole, J.B.D., Amersfoort, M.R., LeBlanc, H.P., 1995. Polarisation-independent monolithic eight-channel 2-nm spacing WDM detector based on compact arrayed waveguide demultiplexer. Electron. Lett., 31(15):1289–1291. [doi:10.1049/el:19950881]CrossRefGoogle Scholar
  35. Sun, Z.J., McGreer, K.A., Broughton, J.N., 1997. Integrated concave grating WDM demultiplexer with 0.144 nm channel spacing. Electron. Lett., 33(13):1140–1142. [doi:10.1049/el:19970795]CrossRefGoogle Scholar
  36. Sun, Z.J., McGreer, K.A., Broughton, J.N., 1998. Demultiplexer with 120 channels and 0.29-nm channel spacing. IEEE Photonics Technol. Lett., 10(1):90–92. [doi:10.1109/68.651118]CrossRefGoogle Scholar
  37. Tachikawa, Y., Inoue, Y., Ishii, M., Nozawa, T., 1996. Arrayed-waveguide grating multiplexer with loop-back optical paths and its applications. J. Lightwave Technol., 14(6):977–984. [doi:10.1109/50.511597]CrossRefGoogle Scholar
  38. Takahashi, H., Suzuki, S., Kato, K., Nishi, I., 1990. Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution. Electron. Lett., 26(2):87–88.CrossRefGoogle Scholar
  39. Takahashi, H., Suzuki, S., Nishi, I., 1994. Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating. J. Lightwave Technol., 12(6):989–995. [doi:10.1109/50.296189]CrossRefGoogle Scholar
  40. Takahashi, H., Oda, K., Toba, H., Inoue, Y., 1995. Transmission characteristics of arrayed waveguide N×N wavelength multiplexer. J. Lightwave Technol., 13(3):447–455. [doi:10.1109/50.372441]CrossRefGoogle Scholar
  41. Takato, N., Kominato, T., Sugita, A., Jinguji, K., Toba, H., Kawachi, M., 1990. Silica-based integrated optic mach-zehnder multi/demultiplexer family with channel spacing of 0.01∼250 nm. IEEE Journal on Selected Areas in Communications, 8(6):1120–1127. [doi:10.1109/49.57816]CrossRefGoogle Scholar
  42. Trinh, P.D., Yegnanarayanan, S., Coppinger, F., Jalali, B., 1997. Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity. IEEE Photonics Technol. Lett., 9(7):940–942. [doi:10.1109/68.593358]CrossRefGoogle Scholar
  43. Vellekoop, R., Smit, M.K., 1991. Four-channel integrated-optic wavelength demultiplexer with weak polarization dependence. J. Lightwave Technol., 9(3):310–314. [doi:10.1109/50.70004]CrossRefGoogle Scholar
  44. Wisely, D.R., 1991. 32 channel WDM multiplexer with 1 nm channel spacing and 0.7 nm bandwidth. Electron. Lett., 27(6):520–521.CrossRefGoogle Scholar
  45. Zirngibl, M., Dragone, C., Joyner, C.H., 1992. Demonstration of a 15×15 arrayed waveguide multiplexer on InP. IEEE Photonics Technol. Lett., 4(11):1250–1253. [doi:10.1109/68.166958]CrossRefGoogle Scholar
  46. Zirngibl, M., Joyner, C.H., Stulz, L.W., Gaiffe, T., Dragone, C., 1993. Polarisation independent 8×8 waveguide grating multiplexer on InP. Electron. Lett., 29(2):201–202.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Thylén L. 
    • 1
    • 2
  • He Sailing 
    • 1
    • 3
  • Wosinski L. 
    • 1
    • 2
  • Dai Daoxin 
    • 1
    • 3
  1. 1.Joint Research Center of Photonics of KTH (The Royal Institute of Technology, Sweden) & Zhejiang UniversityZhejiang UniversityHangzhouChina
  2. 2.Department of Microelectronics and Information TechnologyRoyal Institute of Technology (KTH)KistaSweden
  3. 3.Centre for Optical and Electromagnetic ResearchZhejiang UniversityHangzhouChina

Personalised recommendations