Journal of Zhejiang University-SCIENCE A

, Volume 7, Issue 9, pp 1578–1588 | Cite as

A new representation of orientable 2-manifold polygonal surfaces for geometric modelling

  • Liu Yong-jin 
  • Tang Kai 
  • Joenja Ajay 
Article

Abstract

Many graphics and computer-aided design applications require that the polygonal meshes used in geometric computing have the properties of not only 2-manifold but also are orientable. In this paper, by collecting previous work scattered in the topology and geometry literature, we rigorously present a theoretical basis for orientable polygonal surface representation from a modern point of view. Based on the presented basis, we propose a new combinatorial data structure that can guarantee the property of orientable 2-manifolds and is primal/dual efficient. Comparisons with other widely used data structures are also presented in terms of time and space efficiency.

Key words

Shape representation Combinatorial data structure Computational topology 

CLC number

TP391 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akleman, E., Chen, J., 1999. Guaranteeing the 2-manifold property for meshes with doubly linked face list. International Journal of Shape Modelling, 5(2):159–177.CrossRefGoogle Scholar
  2. Akleman, E., Chen, J., Srinivasan, V., 2003. A minimal and complete set of operators for the development of robust manifold mesh modelers. Graphical Models, 65(5):286–304. [doi:10.1016/S1524-0703(03)00047-X]CrossRefMATHGoogle Scholar
  3. Ansaldi, S., Floriani, L.D., Falcidieno, B., 1985. Geometric modelling of solid objects by using a face adjacent graph representation. ACM SIGGRAPH Computer Graphics, 19(3):131–139. [doi:10.1145/325165.325218]CrossRefGoogle Scholar
  4. Baumgart, B.G., 1972. Winged-edge Polyhedron Representation. Technical report, STAN-CS-320, Stanford University.Google Scholar
  5. Cooke, G.E., Finney, R.L., 1967. Homology of Cell Complexes. Princeton University Press.Google Scholar
  6. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O., 1997. Computational Geometry: Algorithms and Applications. Springer.Google Scholar
  7. do Carmo, M.P., 1976. Differential Geometry for Curves and Surfaces. Prentice-Hall.Google Scholar
  8. Edelsbrunner, H., 1987. Algorithms in Combinatorial Geometry, EATCS Monographs on Theoretical Computer Science (Vol. 10). Springer-Veralg.Google Scholar
  9. Fomenko, A.T., Kunii, T.L., 1997. Topological Modelling for Visualization. Springer.Google Scholar
  10. Giblin, P.J., 1981. Graphs, Surfaces and Homology (2nd Ed.). Chapman and Hall.Google Scholar
  11. Gross, J.L., Tucker, T.W., 1987. Topological Graph Theory. Wiley-Interscience.Google Scholar
  12. Guibas, L., Stolfi, J., 1985. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans. on Graphics, 4(2):74–123. [doi:10.1145/282918.282923]CrossRefMATHGoogle Scholar
  13. Mantyla, M., 1988. An Introduction to Solid Modelling. Computer Science Press.Google Scholar
  14. Preparata, F.P., Shamos, M.I., 1985. Computational Geometry: An Introduction. Springer-Verlag.Google Scholar
  15. Sieradski, A.J., 1992. An Introduction to Topology and Homotopy. PWS-KENT Pub.Google Scholar
  16. Weiler, K., 1985. Edge-based data structures for solid modelling in curved-surface environments. IEEE Computer Graphics and Applications, 5(1):21–40.CrossRefGoogle Scholar

Copyright information

© Zhejiang University 2006

Authors and Affiliations

  • Liu Yong-jin 
    • 1
  • Tang Kai 
    • 2
  • Joenja Ajay 
    • 3
  1. 1.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina
  2. 2.Department of Mechanical EngineeringHong Kong University of Science and TechnologyHong KongChina
  3. 3.Department of Industrial Engineering and Logistic ManagementHong Kong University of Science and TechnologyHong KongChina

Personalised recommendations