Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 7, Issue 7, pp 1215–1224 | Cite as

Surfel-based surface modeling for robotic belt grinding simulation

  • Ren Xiang-yang 
  • Mueller Heinrich 
  • Kuhlenkoetter Bernd 
Article

Abstract

The new free-form surface modelling technology for robotic belt grinding simulation presented in this paper is based on discrete surfel elements generated from the surface approximation point set and can facilitate the simulation implementation. A local process model exploits the advantage of surfel representation to compute the material removal rate and the final surface grinding error can be easily carried out. With the help of this system, robot programmers can improve the path planning and predict potential problems by visualizing the manufacturing process.

Key words

Surface modelling Surfel Belt-grinding simulation 

CLC number

TP39 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, B., Dutre, P., 2003. Interactive boolean operations on surfel-bounded solids. ACM Trans. Graph., 22(3):651–656. [doi:10.1145/882262.882320]CrossRefGoogle Scholar
  2. Ayasse, J., 2003. Discrete Displacement Fields: A Versatile Representation of Geometry for Simulation in Computer-Aided Manufacturing. Ph.D Thesis, University Dortmund, Dortmund.Google Scholar
  3. Blinn, F.J., 1978. Simulation of Wrinkled Surfaces. Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’78. New York, USA, p.286–292. [doi:10.1145/800248.507101]Google Scholar
  4. Blum, H., Suttmeier, F.T., 2000. An adaptive finite element discretisation for a simplified Signorini problem. Calcolo., 37(2):65–77. [doi:10.1007/s100920070008]MathSciNetCrossRefzbMATHGoogle Scholar
  5. Blum, H., Schroeder, A., Suttmeier, F.T., 2003. A Posteriori Error Bounds for Finite Element Schemes for a Model Friction Problem. Witten-Bommerholz.Google Scholar
  6. Chhugani, J., Kumar, S., 2003. Budget Sampling of Parametric Surface Patches. Proceedings of the 2003 Symposium on Interactive 3D Graphics. New York, USA, p.131–138.Google Scholar
  7. Doggett, M., Hirche, J., 2000. Adaptive View Dependent Tessellation of Displacement Maps. Proceedings from the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware. New York, USA, p.59–66.Google Scholar
  8. Glaeser, G., Gröller, E., 1998. Efficient Volume-generation During the Simulation of NC-milling. In: Hege, H.C., Polthier, K. (Eds.), Mathematical Visualization. Springer, Heidelburg, p.89–106.CrossRefGoogle Scholar
  9. Hammann, G., 1998. Modellierung des Abtragsverhaltens Elastischer Robotergefuehrter Schleifwerkzeuge. Ph.D Thesis, University Stuttgart, Stuttgart, Germany.CrossRefGoogle Scholar
  10. Herman, T.G., 1992. Discrete multidimensional jordan surfaces. CVGIP: Graph. Models Image Process, 54(6):507–515. [doi:10.1016/1049-9652(92)90070-E]MathSciNetGoogle Scholar
  11. Huang, Y., Oliver, H.J., 1994. NC Milling Error Assessment and Tool Path Correction. Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’94, p.287–294. [doi:10.1145/192161.192231]Google Scholar
  12. Jerard, R.B., Hussaini, S.Z., Drysdale, R.L., Schaudt, B., 1989. Approximate methods for simulation and verification of numerically controlled machining programs. The Visual Computer, 5(6):329–348. [doi:10.1007/BF01999101]CrossRefGoogle Scholar
  13. Kawashima, Y., Itoh, K., Ishida, T., Nonaka, S., Ejiri, K., 1991. A flexible quantitative method for NC machining verification using a space-division based solid model. The Visual Computer, 7(2–3):149–157. [doi:10.1007/BF01901185]CrossRefGoogle Scholar
  14. König, A.H., Gröller, E., 1998. Real Time Simulation and Visualization of NC Milling Processes for Inhomogeneous Materials on Low-end Graphics Hardware. Proceedings of the Computer Graphics International 1998, p.338–349.Google Scholar
  15. Levoy, M., Whitted, T., 1985. The Use of Points as a Display Primitive. Technical Report, Computer Science Department, University of North Carolina at Chapel Hill.Google Scholar
  16. Mueller, H., Surmann, T., Stautner, M., Albersmann, F., Weinert, K., 2003. Online Sculpting and Visualization of Multi-dexel Volumes. Proceedings of the Eighth ACM Symposium on Solid Modelling and Applications, p.258–261.Google Scholar
  17. Oliver, M.A., Webster, R., 1990. Kriging: a method of interpolation for geographical information system. Int. J. Geographical Information Systems, 4(3):313–332.CrossRefGoogle Scholar
  18. Pauly, M., Keiser, R., Kobbelt, P.L., Gross, M., 2003. Shape modeling with point-sampled geometry. ACM Trans. Graph., 22(3):641–650. [doi:10.1145/882262.882319]CrossRefGoogle Scholar
  19. Pfister, H., Zwicker, M., van Baar, J., Gross, M., 2000. Surfels: Surface Elements as Rendering Primitives. Proceedings of SIGGRAPH’00, p.335–342.Google Scholar
  20. Rusinkiewicz, S., Levoy, M., 2000. QSplat: A Multiresolution Point Rendering System for Large Meshes. Proceedings of SIGGRAPH’00, p.343–352.Google Scholar
  21. Saito, T., Takahashi, T., 1991. NC Machining with G-buffer Method. Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’91, ACM Press, p.207–216. [doi:10.1145/122718.122741]Google Scholar
  22. Shepard, D., 1968. A Two-dimensional Interpolation Function for Irregularly-spaced Data. Proceedings of the 1968 23rd ACM National Conference. New York, USA, p.517–524. [doi:10.1145/800186.810616]Google Scholar
  23. Sourin, I.A., Pasko, A.A., 1996. Function representation for sweeping by a moving solid. IEEE Transactions on Visualization and Computer Graphics, 2(1):11–18. [doi:10.1109/2945.489382]CrossRefGoogle Scholar
  24. van Hook, T., 1986. Real-time Shaded NC Milling Display. Proceedings from the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’86. ACM Press, p.15–20. [doi:10.1145/15922.15887]Google Scholar
  25. Yang, M., Lee, E., 1996. NC verification for wire-EDM using an r-map. Computer Aided Design, 28(9):733–740. [doi:10.1016/0010-4485(95)00079-8]CrossRefGoogle Scholar
  26. Zwicker, M., Pfister, H., van Baar, J., Gross, M., 2001. Surface Splatting. Proceedings of SIGGRAPH’01, p.371–378.Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ren Xiang-yang 
    • 1
  • Mueller Heinrich 
    • 2
  • Kuhlenkoetter Bernd 
    • 1
  1. 1.Robotics Research InstituteUniversity of DortmundDortmundGermany
  2. 2.Informatik VIIUniversity of DortmundDortmundGermany

Personalised recommendations