Advertisement

Non-iterative parameter estimation of the 2R-1C model suitable for low-cost embedded hardware

  • Mitar SimićEmail author
  • Zdenka Babić
  • Vladimir Risojević
  • Goran M. Stojanović
Article
  • 21 Downloads

Abstract

Parameter estimation of the 2R-1C model is usually performed using iterative methods that require high-performance processing units. Consequently, there is a strong motivation to develop less time-consuming and more power-efficient parameter estimation methods. Such low-complexity algorithms would be suitable for implementation in portable microcontroller-based devices. In this study, we propose the quadratic interpolation non-iterative parameter estimation (QINIPE) method, based on quadratic interpolation of the imaginary part of the measured impedance, which enables more accurate estimation of the characteristic frequency. The 2R-1C model parameters are subsequently calculated from the real and imaginary parts of the measured impedance using a set of closed-form expressions. Comparative analysis conducted on the impedance data of the 2R-1C model obtained in both simulation and measurements shows that the proposed QINIPE method reduces the number of required measurement points by 80% in comparison with our previously reported non-iterative parameter estimation (NIPE) method, while keeping the relative estimation error to less than 1% for all estimated parameters. Both non-iterative methods are implemented on a microcontroller-based device; the estimation accuracy, RAM, flash memory usage, and execution time are monitored. Experiments show that the QINIPE method slightly increases the execution time by 0.576 ms (about 6.7%), and requires 24% (1.2 KB) more flash memory and just 2.4% (32 bytes) more RAM in comparison to the NIPE method. However, the impedance root mean square errors (RMSEs) of the QINIPE method are decreased to 42.8% (for the real part) and 64.5% (for the imaginary part) of the corresponding RMSEs obtained using the NIPE method. Moreover, we compared the QINIPE and the complex nonlinear least squares (CNLS) estimation of the 2R-1C model parameters. The results obtained show that although the estimation accuracy of the QINIPE is somewhat lower than the estimation accuracy of the CNLS, it is still satisfactory for many practical purposes and its execution time reduces to \(\frac{1}{45}-\frac{1}{30}\).

Keywords

2R-1C model Embedded systems Parameter estimation Non-iterative methods Quadratic interpolation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbasbandy S, 2005. Extended Newton’s method for a system of nonlinear equations by modified Adomian decomposition method. Appl Math Comput, 170(1):648–656.  https://doi.org/10.1016/j.amc.2004.12.048 MathSciNetzbMATHGoogle Scholar
  2. Al-Ali AA, Elwakil AS, Maundy BJ, et al., 2018. Extraction of phase information from magnitude-only bio-impedance measurements using a modified Kramers-Kronig transform. Circ Syst Signal Process, 37(8):3635–3650.  https://doi.org/10.1007/s00034-017-0727-y MathSciNetCrossRefGoogle Scholar
  3. Babolian E, Biazar J, Vahidi AR, 2004. Solution of a system of nonlinear equations by Adomian decomposition method. Appl Math Comput, 150(3):847–854.  https://doi.org/10.1016/S0096-3003(03)00313-8 MathSciNetzbMATHGoogle Scholar
  4. Barsoukov E, Macdonald JR, 2005. Impedance Spectroscopy: Theory, Experiment, and Applications. John Wiley & Sons, Inc., USA.CrossRefGoogle Scholar
  5. Bertrand CA, Hopfer U, 2002. Measurement of membrane capacitance in epithelial monolayers. In: Wise C (Ed.), Epithelial Cell Culture Protocols. Humana Press, p.315–327.  https://doi.org/10.1385/1-59259-185-X:315 CrossRefGoogle Scholar
  6. Blad B, 1996. Clinical applications of characteristic frequency measurements: preliminary in vivo study. Med Biol Eng Comput, 34(5):362–365.  https://doi.org/10.1007/BF02520006 CrossRefGoogle Scholar
  7. Boinet M, Condolf C, Goulet R, et al., 2016. Parameter identification in electrochemical impedance spectroscopy applications: analysis of sensitivity. Meet Abstr, MA2016-02:1707.Google Scholar
  8. Bondarenko AS, 2012. Analysis of large experimental datasets in electrochemical impedance spectroscopy. Anal Chim Acta, 743:41–50.  https://doi.org/10.1016/j.aca.2012.06.055 CrossRefGoogle Scholar
  9. Boukamp BA, Rolle A, 2018. Use of a distribution function of relaxation times (DFRT) in impedance analysis of SOFC electrodes. Sol State Ion, 314:103–111.  https://doi.org/10.1016/j.ssi.2017.11.021 Google Scholar
  10. Cordero A, Torregrosa JR, 2007. Variants of Newton’s method using fifth-order quadrature formulas. Appl Math Comput, 190(1):686–698.  https://doi.org/10.1016/j.amc.2007.01.062 MathSciNetzbMATHGoogle Scholar
  11. Darvishi MT, Barati A, 2007. A third-order Newton-type method to solve systems of nonlinear equations. Appl Math Comput, 187(2):630–635.  https://doi.org/10.1016/j.amc.2006.08.080 MathSciNetzbMATHGoogle Scholar
  12. de Lorenzo A, Andreoli A, Matthie J, et al., 1997. Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J Appl Physiol, 82(5):1542–1558.  https://doi.org/10.1152/jappl.1997.82.5.1542 CrossRefGoogle Scholar
  13. Dong TK, Kirchev A, Mattera F, et al., 2011. Dynamic modeling of Li-ion batteries using an equivalent electrical circuit. J Electrochem Soc, 158(3):A326–A336.CrossRefGoogle Scholar
  14. Ferreira J, Seoane F, Ansede A, et al., 2010. AD5933-based spectrometer for electrical bioimpedance applications. J Phys, 224(1):012011.  https://doi.org/10.1088/1742-6596/224/1/012011 Google Scholar
  15. Ferreira J, Seoane F, Lindecrantz K, 2013. Portable bioimpedance monitor evaluation for continuous impedance measurements. Towards wearable plethysmography applications. Proc 35th Annual Int Conf of the IEEE Engineering in Medicine and Biology Society, p.559–562.  https://doi.org/10.1109/EMBC.2013.6609561 Google Scholar
  16. Freeborn TJ, Elwakil AS, Maundy B, 2017. Variability of cole-model bioimpedance parameters using magnitudeonly measurements of apples from a two-electrode configuration. Int J Food Prop, 20(S1):S507–S519.  https://doi.org/10.1080/10942912.2017.1300810 CrossRefGoogle Scholar
  17. Gheorghe AG, Marin CV, Constantinescu F, et al., 2012. Parameter identification for a new circuit model aimed to predict body water volume. Adv Electr Comput Eng, 12(4):83–86.  https://doi.org/10.4316/AECE.2012.04013 CrossRefGoogle Scholar
  18. Golbabai A, Javidi M, 2007. A new family of iterative methods for solving system of nonlinear algebric equations. Appl Math Comput, 190(2):1717–1722.  https://doi.org/10.1016/j.amc.2007.02.055 MathSciNetzbMATHGoogle Scholar
  19. Holevinsky KO, Nelson DJ, 1998. Membrane capacitance changes associated with particle uptake during phagocytosis in macrophages. Biophys J, 75(5):2577–2586.  https://doi.org/10.1016/S0006-3495(98)77703-3 CrossRefGoogle Scholar
  20. Hotka M, Zahradnik I, 2014. Membrane capacitance changes due to temperature increase in rat cardiac myocytes. Biophys J, 106(2 Suppl 1):121A–122A.  https://doi.org/10.1016/j.bpj.2013.11.726 CrossRefGoogle Scholar
  21. Kern R, Sastrawan R, Ferber J, et al., 2002. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim Acta, 47(26):4213–4225.  https://doi.org/10.1016/S0013-4686(02)00444-9 CrossRefGoogle Scholar
  22. Kyle UG, Genton L, Slosman DO, et al., 2001. Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years. Nutrition, 17(7–8):534–541.  https://doi.org/10.1016/S0899-9007(01)00555-X CrossRefGoogle Scholar
  23. Lazović G, Vosika Z, Lazarević M, et al., 2014. Modeling of bioimpedance for human skin based on fractional distributed-order modified cole model. FME Trans, 42(1):74–81.  https://doi.org/10.5937/fmet1401075L CrossRefGoogle Scholar
  24. Manjakkal L, Cvejin K, Kulawik J, et al., 2014. Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements. Sens Actuat B, 204:57–67.  https://doi.org/10.1016/j.snb.2014.07.067 CrossRefGoogle Scholar
  25. Manjakkal L, Djurdjic E, Cvejin K, et al., 2015a. Electrochemical impedance spectroscopic analysis of RuO2 based thick film pH sensors. Electrochim Acta, 168:246–255.  https://doi.org/10.1016/j.electacta.2015.04.048 CrossRefGoogle Scholar
  26. Manjakkal L, Cvejin K, Bajac B, et al., 2015b. Microstructural, impedance spectroscopic and potentiometric analysis of Ta2O5 electrochemical thick film pH sensors. Electroanalysis, 27(3):770–781.  https://doi.org/10.1002/elan.201400571 CrossRefGoogle Scholar
  27. Maundy BJ, Elwakil AS, Allagui A, 2015. Extracting the parameters of the single-dispersion cole bioimpedance model using a magnitude-only method. Comput Electr Agric, 119:153–157.  https://doi.org/10.1016/j.compag.2015.10.014 CrossRefGoogle Scholar
  28. Moss P, Au G, Plichta EJ, et al., 2008. An electrical circuit for modeling the dynamic response of Li-ion polymer batteries. J Electrochem Soc, 155(12):A986–A994.  https://doi.org/10.1149/1.2999375 CrossRefGoogle Scholar
  29. Noor MA, 2007. Fifth-order convergent iterative method for solving nonlinear equations using quadrature formula. J Math Contr Sci Appl, 1:241–249.Google Scholar
  30. Ortega JM, Rheinboldt WC, 1970. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, USA.zbMATHGoogle Scholar
  31. Pena AA, 2009. A feasibility study of the suitability of an AD5933-based spectrometer for EBI applications. University of Boras, Boras, p.2009–2010.Google Scholar
  32. Qiao GF, Wang W, Duan W, et al., 2012. Bioimpedance analysis for the characterization of breast cancer cells in suspension. IEEE Trans Biomed Eng, 59(8):2321–2329.  https://doi.org/10.1109/TBME.2012.2202904 CrossRefGoogle Scholar
  33. Ramírez-Chavarría RG, Quintana-Carapia G, Müller MI, et al., 2018. Bioimpedance parameter estimation using fast spectral measurements and regularization. IFACPapersOnLine, 51(15):521–526.  https://doi.org/10.1016/j.ifacol.2018.09.198 Google Scholar
  34. Sanchez B, Schoukens J, Bragos R, et al., 2011. Novel estimation of the electrical bioimpedance using the local polynomial method. Application to in vivo real-time myocardium tissue impedance characterization during the cardiac cycle. IEEE Trans Biomed Eng, 58(12):3376–3385.  https://doi.org/10.1109/TBME.2011.2166116 CrossRefGoogle Scholar
  35. Sanchez B, Rojas CR, Vandersteen G, et al., 2012. On the calculation of the D-optimal multisine excitation power spectrum for broadband impedance spectroscopy measurements. Meas Sci Technol, 23(8):085702.  https://doi.org/10.1088/0957-0233/23/8/085702 CrossRefGoogle Scholar
  36. Sanchez B, Bandarenka AS, Vandersteen G, et al., 2013. Novel approach of processing electrical bioimpedance data using differential impedance analysis. Med Eng Phys, 35(9):1349–1357.CrossRefGoogle Scholar
  37. Sánchez Terrones B, Louarroudi E, Pintelon R, et al., 2013. Modeling the non-stationary behaviour of time-varying electrical bioimpedance. Proc 19th IMEKO Symp Measurements of Electrical Quantities, p.378–384.Google Scholar
  38. Santos-Sacchi J, 2004. Determination of cell capacitance using the exact empirical solution of δY/δC m and its phase angle. Biophys J, 87(1):714–727.  https://doi.org/10.1529/biophysj.103.033993 CrossRefGoogle Scholar
  39. Schulz H, Teske D, Penven D, et al., 2006. Fat-free mass from two prediction equations for bioelectrical impedance analysis in a large German population compared with values in Swiss and American adults: reasons for a biadata project. Nutrition, 22(9):973–975.  https://doi.org/10.1016/j.nut.2006.04.007 CrossRefGoogle Scholar
  40. Seoane F, Ferreira J, Sanchez JJ, et al., 2008. An analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applications. Physiol Meas, 29(6):S267–S278.  https://doi.org/10.1088/0967-3334/29/6/S23 CrossRefGoogle Scholar
  41. Simić M, 2014. Complex impedance measurement system for environmental sensors characterization. Proc 22nd Telecommunications Forum Telfor, p.660–663.  https://doi.org/10.1109/TELFOR.2014.7034495 Google Scholar
  42. Simić M, Stojanović GM, 2017. Compact electronic system for complex impedance measurement and its experimental verification. Proc European Conf on Circuit Theory and Design, p.1–4.  https://doi.org/10.1109/ECCTD.2017.8093360 Google Scholar
  43. Simić M, Babić Z, Risojević V, et al., 2016. A novel non-iterative method for real-time parameter estimation of the Fricke-Morse model. Adv Electr Comput Eng, 16(4): 57–62.  https://doi.org/10.4316/AECE.2016.04009 CrossRefGoogle Scholar
  44. Simić M, Babić Z, Risojević V, et al., 2017a. A novel approach for parameter estimation of Fricke-Morse model using differential impedance analysis. Proc Int Conf on Medical and Biological Engineering, p.487–494.  https://doi.org/10.1007/978-981-10-4166-2_75 Google Scholar
  45. Simić M, Manjakkal L, Zaraska K, et al., 2017b. TiO2-based thick film pH sensor. IEEE Sens J, 17(2):248–255.  https://doi.org/10.1109/JSEN.2016.2628765 CrossRefGoogle Scholar
  46. Vargas-Bernal R, de la Cruz Blas CA, Gòmez-Polo C, 2018. Electrical circuit modeling of sensor magnetoimpedances with a square-root frequency dependence. IEEE Sens J, 18(2):623–628.  https://doi.org/10.1109/JSEN.2017.2776525 CrossRefGoogle Scholar
  47. Wang CS, Nehrir MH, Shaw SR, 2005. Dynamic models and model validation for PEM fuel cells using electrical circuits. IEEE Trans Energy Conv, 20(2):442–451.  https://doi.org/10.1109/TEC.2004.842357 CrossRefGoogle Scholar
  48. Wang Z, Luo M, Geng Y, et al., 2018. A model to compare convective and radiant heating systems for intermittent space heating. Appl Energy, 215:211–226.  https://doi.org/10.1016/j.apenergy.2018.01.088 CrossRefGoogle Scholar
  49. Ward LC, Heitmann BL, 1998. Multiple frequency bioelectrical impedance analysis (MFBIA) and R-X plots in the assessment of obesity. Proc Aust Soc Study Obesity, 7:20.Google Scholar
  50. Ward LC, Heitmann BL, Craig P, et al., 2000. Association between ethnicity, body mass index, and bioelectrical impedance: implications for the population specificity of prediction equations. Ann N Y Acad Sci, 904(1):199–202.  https://doi.org/10.1111/j.1749-6632.2000.tb06449.x CrossRefGoogle Scholar
  51. Yousri DA, AbdelAty AM, Said LA, et al., 2017. Biological inspired optimization algorithms for cole-impedance parameters identification. AEU-Int J Electron Commun, 78:79–89.  https://doi.org/10.1016/j.aeue.2017.05.010 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUniversity of Banja LukaBanja LukaBosnia and Herzegovina
  2. 2.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations