Advertisement

Dot-shaped beamforming analysis of subarray-based sin-FDA

  • Bo WangEmail author
  • Jun-wei Xie
  • Jing Zhang
  • Jia-ang Ge
Article
  • 17 Downloads

Abstract

Phased array (PA) radar is one of the most popular types of radar. In contrast to PA, the frequency diverse array (FDA) is a potential solution to suppress range-related interference because of its time-range-angle-dependent beampattern. However, the range-angle coupling inherent in the FDA transmit beampattern may degrade the output signal-to-interference-plus-noise ratio (SINR). We propose a dot-shaped beamforming method based on the analyzed four subarray-based FDAs and subarray-based planar FDAs using a sinusoidally increasing frequency offset with elements transmitting at multiple frequencies. The numerical results show that the proposed approach outperforms the existing log-FDA with logarithmical frequency offset in transmit energy focus, sidelobe suppression, and array resolution. Comparative simulation results validate the effectiveness of the proposed method.

Key words

Frequency diverse array Subarray-based frequency diverse array Decoupling Dot-shaped beamforming 

CLC number

TN973.21 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Compliance with ethics guidelines

Bo WANG, Jun-wei XIE, Jing ZHANG, and Jia-ang GE declare that they have no conflict of interest.

References

  1. Antonik P, Wicks MC, Griffiths HD, et al., 2006a. Frequency diverse array radars. Proc IEEE Conf on Radar, p.215–217.  https://doi.org/10.1109/RADAR.2006.1631800 Google Scholar
  2. Antonik P, Wicks MC, Griffiths HD, et al., 2006b. Range-dependent beamforming using element level waveform diversity. Proc Int Waveform Diversity and Design Conf, p.71–76.  https://doi.org/10.1109/WDD.2006.8321488 Google Scholar
  3. Baizert P, Hale TB, Temple MA, et al., 2006. Forward-looking radar GMTI benefits using a linear frequency diverse array. Electron Lett, 42(22):1311–1312.  https://doi.org/10.1049/el:20062791 CrossRefGoogle Scholar
  4. Basit A, Qureshi IM, Khan W, et al., 2015. Cognitive frequency offset calculation for frequency diverse array radar. Proc 12th Int Bhurban Conf on Applied Sciences and Technology, p.641–645.  https://doi.org/10.1109/IBCAST.2015.7058575 Google Scholar
  5. Basit A, Qureshi IM, Khan W, et al., 2017. Beam pattern synthesis for an FDA radar with hamming window-based nonuniform frequency offset. IEEE Antenn Wirel Propag Lett, 16:2283–2286.  https://doi.org/10.1109/LAWP.2017.2714761 CrossRefGoogle Scholar
  6. Cetintepe C, Demir S, 2014. Multipath characteristics of frequency diverse arrays over a ground plane. IEEE Trans Antenn Propag, 62(7):3567–3574.  https://doi.org/10.1109/TAP.2014.2316292 MathSciNetCrossRefGoogle Scholar
  7. Fenn AJ, 2008. Adaptive Antennas and Phased Arrays for Radar and Communications. Artech House, Norwood, MA, USA.Google Scholar
  8. Hansen RC, 2009. Phased Array Antennas (2und Ed.). John Wiley & Sons, New Jersey, USA.  https://doi.org/10.1002/9780470529188 CrossRefGoogle Scholar
  9. Hu JS, Yan SH, Shu F, et al., 2017. Artificial-noise-aided secure transmission with directional modulation based on random frequency diverse arrays. IEEE Access, 5:1658–1667.  https://doi.org/10.1109/ACCESS.2017.2653182 CrossRefGoogle Scholar
  10. Jones AM, Rigling BD, 2012. Planar frequency diverse array receiver architecture. Proc Radar Conf, p.145–150.  https://doi.org/10.1109/RADAR.2012.6212127 Google Scholar
  11. Keizer WPMN, 2011. Low sidelobe phased array pattern synthesis with compensation for errors due to quantized tapering. IEEE Trans Antenn Propag, 59(12):4520–4524.  https://doi.org/10.1109/TAP.2011.2165509 CrossRefGoogle Scholar
  12. Khan W, Qureshi IM, Saeed S, 2014. Frequency diverse array radar with logarithmically increasing frequency offset. IEEE Antenn Wirel Propag Lett, 14:499–502.  https://doi.org/10.1109/LAWP.2014.2368977 CrossRefGoogle Scholar
  13. Khan W, Qureshi IM, Basit A, et al., 2015. Range-bins-based MIMO frequency diverse array radar with logarithmic frequency offset. IEEE Antenn Wirel Propag Lett, 15. 885–888.  https://doi.org/10.1109/LAWP.2015.2478964 CrossRefGoogle Scholar
  14. Khan W, Qureshi IM, Basit A, et al., 2016a. Performance analysis of MIMO-frequency diverse array radar with variable logarithmic offsets. Prog Electromagn Res C, 62:23–34.  https://doi.org/10.2528/PIERC16010902 CrossRefGoogle Scholar
  15. Khan W, Qureshi IM, Basit A, et al., 2016b. Transmit/received beamforming for MIMO log-frequency diverse array radar. Proc 13th Int Bhurban Conf on Applied Sciences and Technology, p.689–693.  https://doi.org/10.1109/IBCAST.2016.7429955 Google Scholar
  16. Li Q, Huang L, So HC, et al., 2017. Beampattern synthesis for frequency diverse array via reweighted 1 iterative phase compensation. IEEE Trans Aerosp Electron Syst, 54(1): 467–475.  https://doi.org/10.1109/TAES.2017.2735638 CrossRefGoogle Scholar
  17. Liu YM, 2016. Range azimuth indication using a random frequency diverse array. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.3111–3115.  https://doi.org/10.1109/ICASSP.2016.7472250 Google Scholar
  18. Sammartino PF, Baker CJ, Griffiths HD, 2013. Frequency diverse MIMO techniques for radar. IEEE Trans Aerosp Electron Syst, 49(1):201–222.  https://doi.org/10.1109/TAES.2013.6404099 CrossRefGoogle Scholar
  19. Shao H, Dai H, Xiong H, et al., 2016. Dot-shaped range-angle beampattern synthesis for frequency diverse array. IEEE Antenn Wirel Propag Lett, 15:1703–1706.  https://doi.org/10.1109/LAWP.2016.2527818 CrossRefGoogle Scholar
  20. Shin J, Choi JH, Kim J, et al., 2013. Full-wave simulation of frequency diverse array antenna using the FDTD method. Proc Conf on Asia-Pacific Microwave, p.1070–1072.  https://doi.org/10.1109/APMC.2013.6695023 Google Scholar
  21. Wang SL, Xu ZH, Liu XH, et al, 2018. A novel transmit-receive system of frequency diverse array radar for mul-titarget localization. Electronics, 7(12), Article 408.  https://doi.org/10.3390/electronics7120408 CrossRefGoogle Scholar
  22. Wang WQ, 2014. Subarray-based frequency diverse array radar for target range-angle estimation. IEEE Trans Aerosp Electron Syst, 50(4):3057–3067.  https://doi.org/10.1109/TAES.2014.120804 CrossRefGoogle Scholar
  23. Wang WQ, So HC, 2014. Transmit subaperturing for range and angle estimation in frequency diverse array radar. IEEE Trans Signal Process, 62(8):2000–2011.  https://doi.org/10.1109/TSP.2014.2305638 MathSciNetCrossRefGoogle Scholar
  24. Wang WQ, Shao HZ, Cai JY, 2012. Range-angle-dependent beamforming by frequency diverse array antenna. Int J Antenn Propag, 2012:760489.  https://doi.org/10.1155/2012/760489 Google Scholar
  25. Wang WQ, So HC, Shao HZ, 2014. Nonuniform frequency diverse array for range-angle imaging of targets. IEEE Sens J, 14(8):2469–2476.  https://doi.org/10.1109/JSEN.2014.2304720 CrossRefGoogle Scholar
  26. Wang YX, Huang GC, Li W, 2016. Transmit beampattern design in range and angle domains for MIMO frequency diverse array radar. IEEE Antenn Wirel Propag Lett, 16:1003–1006.  https://doi.org/10.1109/LAWP.2016.2616193 CrossRefGoogle Scholar
  27. Wicks MC, Antonik P, 2008. Frequency Diverse Array with Independent Modulation of Frequency, Amplitude, and Phase. US Patent 731 942 7B2.Google Scholar
  28. Wicks MC, Antonik P, 2009. Method and Apparatus for a Frequency Diverse Array. US Patent 2 009 001 547 4A1.Google Scholar
  29. Xu YH, Shi XW, Xu JW, et al., 2015. Range-angle-dependent beamforming of pulsed frequency diverse array. IEEE Trans Antenn Propag, 63(7):3262–3267.  https://doi.org/10.1109/TAP.2015.2423698 MathSciNetCrossRefGoogle Scholar
  30. Xu YH, Shi XW, Xu JW, et al., 2017. Range-angle-decoupled beampattern synthesis with subarray-based frequency diverse array. Dig Signal Proc, 64:49–59.  https://doi.org/10.1016/j.dsp.2017.02.005 MathSciNetCrossRefGoogle Scholar
  31. Zhang ZJ, Xie JW, Sheng C, et al., 2017. Deceptive jamming discrimination based on range-angle localization of frequency diverse array. Front Inform Technol Electron Eng, 18(9):1437–1447.  https://doi.org/10.1631/FITEE.1601577 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Air and Missile Defense CollegeAir Force Engineering UniversityXi’anChina
  2. 2.Shaanxi Vocational and Technical College of TransportXi’anChina

Personalised recommendations