Advertisement

Disturbance rejection via iterative learning control with a disturbance observer for active magnetic bearing systems

  • Ze-zhi Tang
  • Yuan-jin Yu
  • Zhen-hong Li
  • Zheng-tao DingEmail author
Article

Abstract

Although standard iterative learning control (ILC) approaches can achieve perfect tracking for active magnetic bearing (AMB) systems under external disturbances, the disturbances are required to be iteration-invariant. In contrast to existing approaches, we address the tracking control problem of AMB systems under iteration-variant disturbances that are in different channels from the control inputs. A disturbance observer based ILC scheme is proposed that consists of a universal extended state observer (ESO) and a classical ILC law. Using only output feedback, the proposed control approach estimates and attenuates the disturbances in every iteration. The convergence of the closed-loop system is guaranteed by analyzing the contraction behavior of the tracking error. Simulation and comparison studies demonstrate the superior tracking performance of the proposed control approach.

Key words

Active magnetic bearings (AMBs) Iterative learning control (ILC) Disturbance observer 

CLC number

TP27 TH133 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn HS, Chen YQ, Moore KL, 2007. Iterative learning control: brief survey and categorization. IEEE Trans Syst Man Cybern Part C, 37(6):1099–1121. https://doi.org/10.1109/TSMCC.2007.905759CrossRefGoogle Scholar
  2. Arimoto S, Kawamura S, Miyazaki F, 1984. Bettering operation of robots by learning. J Field Robot, 1(2):123–140. https://doi.org/10.1002/rob.4620010203Google Scholar
  3. Baßler S, Dünow P, Marquardt M, et al., 2015. Application of iterative learning control methods for a service robot with multi-body kinematics. 20th Int Conf on Methods and Models in Automation and Robotics, p.465–470. https://doi.org/10.1109/MMAR.2015.7283920Google Scholar
  4. Bi C, Wu DZ, Jiang Q, et al., 2005. Automatic learning control for unbalance compensation in active magnetic bearings. IEEE Trans Magn, 41(7):2270–2280. https://doi.org/10.1109/TMAG.2005.851866CrossRefGoogle Scholar
  5. Bleuler H, Cole M, Keogh P, et al., 2009. Magnetic Bearings: Theory, Design, and Application to Rotating Machinery. Springer-Verlag Berlin Heidelberg.Google Scholar
  6. Bolder J, Lemmen B, Koekebakker S, et al., 2012. Iterative learning control with basis functions for media positioning in scanning inkjet printers. IEEE Int Symp on Intelligent Control, p.1255–1260. https://doi.org/10.1109/ISIC.2012.6398276Google Scholar
  7. Chen WH, Yang J, Guo L, et al., 2016. Disturbance-observerbased control and related methods—an overview. IEEE Trans Ind Electron, 63(2):1083–1095. https://doi.org/10.1109/TIE.2015.2478397CrossRefGoogle Scholar
  8. Chladny RR, Koch CR, 2008. Flatness-based tracking of an electromechanical variable valve timing actuator with disturbance observer feedforward compensation. IEEE Trans Contr Syst Technol, 16(4):652–663. https://doi.org/10.1109/TCST.2007.912121CrossRefGoogle Scholar
  9. Hong SK, Langari R, 2000. Robust fuzzy control of a magnetic bearing system subject to harmonic disturbances. IEEE Trans Contr Syst Technol, 8(2):366–371. https://doi.org/10.1109/87.826808CrossRefGoogle Scholar
  10. Kucera L, 1997. Robustness of self-sensing magnetic bearing. Proc Industrial Conf and Exhibition on Magnetic Bearings, p.261–270.Google Scholar
  11. Lee JH, Allaire PE, Tao G, et al., 2003. Experimental study of sliding mode control for a benchmark magnetic bearing system and artificial heart pump suspension. IEEE Trans Contr Syst Technol, 11(1):128–138. https://doi.org/10.1109/TCST.2002.806457CrossRefGoogle Scholar
  12. Li SH, Yang J, Chen WH, et al., 2012. Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Trans Ind Electron, 59(12):4792–4802. https://doi.org/10.1109/TIE.2011.2182011CrossRefGoogle Scholar
  13. Lindlau JD, Knospe CR, 2002. Feedback linearization of an active magnetic bearing with voltage control. IEEE Trans Contr Syst Technol, 10(1):21–31. https://doi.org/10.1109/87.974335CrossRefGoogle Scholar
  14. Liu HX, Li SH, 2012. Speed control for PMSM servo system using predictive functional control and extended state observer. IEEE Trans Ind Electron, 59(2):1171–1183. https://doi.org/10.1109/TIE.2011.2162217CrossRefGoogle Scholar
  15. Mandra S, Galkowski K, Aschemann H, et al., 2015. Guaranteed cost iterative learning control—an application to control of permanent magnet synchronous motors. IEEE 9th Int Workshop on Multidimensional (nD) Systems, p.1–6. https://doi.org/10.1109/NDS.2015.7332639Google Scholar
  16. Matsumura F, Namerikawa T, Hagiwara K, et al., 1996. Application of gain scheduled H∞ infinity robust controllers to a magnetic bearing. IEEE Trans Contr Syst Technol, 4(5):484–493. https://doi.org/10.1109/87.531915CrossRefGoogle Scholar
  17. Matsumura T, Kataza H, Utsunomiya S, et al., 2016. Design and performance of a prototype polarization modulator rotational system for use in space using a superconducting magnetic bearing. IEEE Trans Appl Supercond, 26(3):3602304. https://doi.org/10.1109/TASC.2016.2533584CrossRefGoogle Scholar
  18. Noh MD, Cho SR, Kyung JH, et al., 2005. Design and implementation of a fault-tolerant magnetic bearing system for turbo-molecular vacuum pump. IEEE/ASME Trans Mech, 10(6):626–631. https://doi.org/10.1109/TMECH.2005.859830CrossRefGoogle Scholar
  19. Peng C, Fang JC, Xu XB, 2015. Mismatched disturbance rejection control for voltage-controlled active magnetic bearing via state-space disturbance observer. IEEE Trans Power Electron, 30(5):2753–2762. https://doi.org/10.1109/TPEL.2014.2352366CrossRefGoogle Scholar
  20. Sawada H, Hashimoto T, Ninomiya K, 2001. High-stability attitude control of satellites by magnetic bearing wheels. Trans Jpn Soc Aeronaut Space Sci, 44(145):133–141. https://doi.org/10.2322/tjsass.44.133CrossRefGoogle Scholar
  21. Sun JK, Li SH, 2017. Disturbance observer based iterative learning control method for a class of systems subject to mismatched disturbances. Trans Inst Meas Contr, 39(11):1749–1760. https://doi.org/10.1177/0142331216645173CrossRefGoogle Scholar
  22. Sun JK, Li SH, Yang J, 2014. Iterative learning control with extended state observer for iteration-varying disturbance rejection. Proc 11th World Congress on Intelligent Control and Automation, p.1148–1153. https://doi.org/10.1109/WCICA.2014.7052880Google Scholar
  23. Yang J, Zheng WX, 2014. Offset-free nonlinear MPC for mismatched disturbance attenuation with application to a static var compensator. IEEE Trans Circ Syst II, 61(1):49–53. https://doi.org/10.1109/TCSII.2013.2290912Google Scholar
  24. Yu YJ, Yang ZH, Fang JC, 2015. Medium-frequency disturbance attenuation for the spacecraft via virtual-gimbal tilting of the magnetically suspended reaction wheel. IET Contr Theory Appl, 9(7):1066–1074. https://doi.org/10.1049/iet-cta.2014.0578CrossRefGoogle Scholar
  25. Yu YJ, Yang ZH, Han C, et al., 2017. Active vibration control of magnetically suspended wheel using active shaft deflection. IEEE Trans Ind Electron, 64(8):6528–6537. https://doi.org/10.1109/TIE.2017.2682786CrossRefGoogle Scholar
  26. Yu YJ, Yang ZH, Han C, et al., 2018a. Fuzzy adaptive back-stepping sliding mode controller for high-precision deflection control of the magnetically suspended momentum wheel. IEEE Trans Ind Electron, 65(4):3530–3538. https://doi.org/10.1109/TIE.2017.2750617CrossRefGoogle Scholar
  27. Yu YJ, Yang ZH, Han C, et al., 2018b. Disturbance-observer based control for magnetically suspended wheel with synchronous noise. Contr Eng Pract, 72:83–89. https://doi.org/10.1016/j.conengprac.2017.10.019CrossRefGoogle Scholar
  28. Zhao YM, Lin Y, Xi FF, et al., 2015. Calibration-based iterative learning control for path tracking of industrial robots. IEEE Trans Ind Electron, 62(5):2921–2929. https://doi.org/10.1109/TIE.2014.2364800CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringUniversity of ManchesterManchesterUK
  2. 2.Sino-British Joint Advanced Control System Technology LaboratoryJames Lighthill BuildingManchesterUK

Personalised recommendations