Advertisement

Time-varying formation tracking for uncertain second-order nonlinear multi-agent systems

  • Mao-Peng RanEmail author
  • Li-Hua Xie
  • Jun-Cheng Li
Article
  • 1 Downloads

Abstract

Our study is concerned with the time-varying formation tracking problem for second-order multi-agent systems that are subject to unknown nonlinear dynamics and external disturbance, and the states of the followers form a predefined time-varying formation while tracking the state of the leader. The total uncertainty lumps the unknown nonlinear dynamics and the external disturbance, and is regarded as an extended state of the agent. To estimate the total uncertainty, we design an extended state observer (ESO). Then we propose a novel ESO based time-varying formation tracking protocol. It is proved that, under the proposed protocol, the ESO estimation error and the time-varying formation tracking error can be made arbitrarily small. An application to the target enclosing problem for multiple unmanned aerial vehicles (UAVs) verifies the effectiveness and superiority of the proposed approach.

Key words

Multi-agent system Time-varying formation Formation tracking Nonlinear dynamics Extended state observer (ESO) 

CLC number

TP13 

References

  1. Bechlioulis CP, Rovithakis GA, 2017. Decentralized robust synchronization of unknown high order nonlinear multiagent systems with prescribed transient and steady state performance. IEEE Trans Autom Contr, 62(1):123–134. https://doi.org/10.1109/TAC.2016.2535102CrossRefzbMATHGoogle Scholar
  2. Castañeda LA, Luviano-Juárez A, Chairez I, 2015. Robust trajectory tracking of a delta robot through adaptive active disturbance rejection control. IEEE Trans Contr Syst Technol, 23(4):1387–1398. https://doi.org/10.1109/TCST.2014.2367313CrossRefGoogle Scholar
  3. Chang XY, Li YL, Zhang WY, et al., 2015. Active disturbance rejection control for a flywheel energy storage system. IEEE Trans Ind Electron, 62(2):991–1001. https://doi.org/10.1109/TIE.2014.2336607CrossRefGoogle Scholar
  4. Chen LM, Li CJ, Mei J, et al., 2017. Adaptive cooperative formation-containment control for networked Euler-Lagrange systems without using relative velocity information. IET Contr Theory Appl, 11(9):1450–1458. https://doi.org/10.1049/iet-cta.2016.1185MathSciNetCrossRefGoogle Scholar
  5. Chen YY, Wang ZZ, Zhang Y, et al., 2017a. A geometric extension design for spherical formation tracking control of second-order agents in unknown spatiotemporal flowfields. Nonl Dynam, 88(2):1173–1186. https://doi.org/10.1007/s11071-016-3303-2CrossRefzbMATHGoogle Scholar
  6. Chen YY, Zhang Y, Wang ZZ, 2017b. An adaptive backstepping design for formation tracking motion in an unknown Eulerian specification flowfield. J Franklin Inst, 354(14):6217–6233. https://doi.org/10.1016/j.jfranklin.2017.07.020MathSciNetCrossRefzbMATHGoogle Scholar
  7. Cui RX, Ge SS, How BVE, et al., 2010. Leader-follower formation control of underactuated autonomous underwater vehicles. Ocean Eng, 37(17-18):1491–1502. https://doi.org/10.1016/j.oceaneng.2010.07.006CrossRefGoogle Scholar
  8. Dong XW, Yu BC, Shi ZY, et al., 2015. Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans Contr Syst Technol, 23(1):340–348. https://doi.org/10.1109/TCST.2014.2314460CrossRefGoogle Scholar
  9. Dong XW, Xiang J, Han L, et al., 2017a. Distributed time-varying formation tracking analysis and design for second-order multi-agent systems. J Intell Robot Syst, 86(2):277–289. https://doi.org/10.1007/s10846-016-0421-5CrossRefGoogle Scholar
  10. Dong XW, Zhou Y, Ren Z, et al., 2017b. Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying. IEEE Trans Ind Electron, 64(6):5014–5024. https://doi.org/10.1109/TIE.2016.2593656CrossRefGoogle Scholar
  11. Du HB, Cheng MZQ, Wen GH, 2016. Leader-following attitude consensus for spacecraft formation with rigid and flexible spacecraft. J Guid Contr Dynam, 39(4):944–951. https://doi.org/10.2514/1.G001273CrossRefGoogle Scholar
  12. Freidovich LB, Khalil HK, 2008. Performance recovery of feedback-linearization-based designs. IEEE Trans Autom Contr, 53(10):2324–2334. https://doi.org/10.1109/TAC.2008.2006821MathSciNetCrossRefzbMATHGoogle Scholar
  13. Galzi D, Shtessel Y, 2006. UAV formations control using high order sliding modes. American Control Conf, p.4249–4254. https://doi.org/10.1109/ACC.2006.1657386Google Scholar
  14. Guo BZ, Zhao ZL, 2011. On the convergence of an extended state observer for nonlinear systems with uncertainty. Syst Contr Lett, 60(6):420–430. https://doi.org/10.1016/j.sysconle.2011.03.008MathSciNetCrossRefzbMATHGoogle Scholar
  15. Guo J, Yan GF, Lin ZY, 2010. Local control strategy for moving-target-enclosing under dynamically changing network topology. Syst Contr Lett, 59(10):654–661. https://doi.org/10.1016/j.sysconle.2010.07.010MathSciNetCrossRefzbMATHGoogle Scholar
  16. Han JQ, 2009. From PID to active disturbance rejection control. IEEE Trans Ind Electron, 56(3):900–906. https://doi.org/10.1109/TIE.2008.2011621CrossRefGoogle Scholar
  17. Herbst G, 2016. Practical active disturbance rejection control: bumpless transfer, rate limitation, and incremental algorithm. IEEE Trans Ind Electron, 63(3):1754–1762. https://doi.org/10.1109/TIE.2015.2499168CrossRefGoogle Scholar
  18. Hu WH, Camacho EF, Xie LH, 2018. Output feedback control based on state and disturbance estimation. https://arxiv.org/abs/1801.06058Google Scholar
  19. Isidori A, 1989. Nonlinear Control Systems. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-662-02581-9CrossRefGoogle Scholar
  20. Jiang TT, Huang CD, Guo L, 2015. Control of uncertain nonlinear systems based on observers and estimators. Automatica, 59:35–47. https://doi.org/10.1016/j.automatica.2015.06.012MathSciNetCrossRefzbMATHGoogle Scholar
  21. Khalil HK, 2002. Nonlinear Systems (3rd Ed.). Prentice Hall, New Jersey, USA.zbMATHGoogle Scholar
  22. Leonard NE, Paley DA, Davis RE, et al., 2010. Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J Field Robot, 27(6):718–740. https://doi.org/10.1002/rob.20366CrossRefGoogle Scholar
  23. Li CJ, Chen LM, Guo YN, et al., 2018. Formationcontainment control for networked Euler-Lagrange systems with input saturation. Nonl Dynam, 91(2):1307–1320. https://doi.org/10.1007/s11071-017-3946-7CrossRefzbMATHGoogle Scholar
  24. Li SB, Zhang J, Li XL, et al., 2017. Formation control of heterogeneous discrete-time nonlinear multi-agent systems with uncertainties. IEEE Trans Ind Electron, 64(6):4730–4740. https://doi.org/10.1109/TIE.2017.2674590CrossRefGoogle Scholar
  25. Li XX, Xie LH, 2018. Dynamic formation control over directed networks using graphical Laplacian approach. IEEE Trans Autom Contr, 63(11):3761–3774. https://doi.org/10.1109/TAC.2018.2798808MathSciNetCrossRefzbMATHGoogle Scholar
  26. Li ZK, Wen GH, Duan ZS, et al., 2015. Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs. IEEE Trans Autom Contr, 60(4):1152–1157. https://doi.org/10.1109/TAC.2014.2350391MathSciNetCrossRefzbMATHGoogle Scholar
  27. Liao F, Teo R, Wang JL, et al., 2017. Distributed formation and reconfiguration control of VTOL UAVs. IEEE Trans Contr Syst Technol, 25(1):270–277. https://doi.org/10.1109/TCST.2016.2547952CrossRefGoogle Scholar
  28. Lin ZY, Ding W, Yan GF, et al., 2013. Leader-follower formation via complex Laplacian. Automatica, 49(6):1900–1906. https://doi.org/10.1016/j.automatica.2013.02.055MathSciNetCrossRefzbMATHGoogle Scholar
  29. Liu Y, Jia YM, 2012. An iterative learning approach to formation control of multi-agent systems. Syst Contr Lett, 61(1):148–154. https://doi.org/10.1016/j.sysconle.2011.10.011MathSciNetCrossRefzbMATHGoogle Scholar
  30. Lotfi N, Zomorodi H, Landers RG, 2016. Active disturbance rejection control for voltage stabilization in open-cathode fuel cells through temperature regulation. Contr Eng Pract, 56:92–100. https://doi.org/10.1016/j.conengprac.2016.08.006CrossRefGoogle Scholar
  31. Lü J, Chen F, Chen GR, 2016. Nonsmooth leader-following formation control of nonidentical multi-agent systems with directed communication topologies. Automatica, 64:112–120. https://doi.org/10.1016/j.automatica.2015.11.004MathSciNetCrossRefzbMATHGoogle Scholar
  32. Meng DY, Jia YM, Du JP, et al., 2014. On iterative learning algorithms for the formation control of nonlinear multiagent systems. Automaitca, 50(1):291–295. https://doi.org/10.1016/j.automatica.2013.11.009CrossRefzbMATHGoogle Scholar
  33. Meng ZY, Ren W, You Z, 2010. Distributed finite-time attitude containment control for multiple rigid bodies. Automatica, 46(12):2092–2099. https://doi.org/10.1016/j.automatica.2010.09.005MathSciNetCrossRefzbMATHGoogle Scholar
  34. Oh KK, Ahn HS, 2014. Formation control and network localization via orientation alignment. IEEE Trans Autom Contr, 59(2):540–545. https://doi.org/10.1109/TAC.2013.2272972MathSciNetCrossRefzbMATHGoogle Scholar
  35. Oh KK, Park MC, Ahn HS, 2015. A survey of multi-agent formation control. Automatica, 53:424–440. https://doi.org/10.1016/j.automatica.2014.10.022MathSciNetCrossRefzbMATHGoogle Scholar
  36. Peng ZH, Wang D, Chen ZY, et al., 2013. Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics. IEEE Trans Contr Syst Technol, 21(2):513–520. https://doi.org/10.1109/TCST.2011.2181513CrossRefGoogle Scholar
  37. Ran MP, Wang Q, Dong CY, et al., 2017a. Backstepping active disturbance rejection control: a delayed activation approach. IET Contr Theory Appl, 11(14):2336–2342. https://doi.org/10.1049/iet-cta.2016.1533MathSciNetCrossRefGoogle Scholar
  38. Ran MP, Wang Q, Dong CY, 2017b. Active disturbance rejection control for uncertain nonaffine-in-control nonlinear systems. IEEE Trans Autom Contr, 62(11):5830–5836. https://doi.org/10.1109/TAC.2016.2641980MathSciNetCrossRefzbMATHGoogle Scholar
  39. Ren W, 2007. Consensus strategies for cooperative control of vehicle formations. IET Contr Theory Appl, 1(2):505–512. https://doi.org/10.1049/iet-cta:20050401MathSciNetCrossRefGoogle Scholar
  40. Ren W, Sorensen N, 2008. Distributed coordination architecture for multi-robot formation control. Robot Auton Syst, 56(4):324–333. https://doi.org/10.1016/j.robot.2007.08.005CrossRefzbMATHGoogle Scholar
  41. Wang JN, Xin M, 2013. Integrated optimal formation control of multiple unmanned aerial vehicles. IEEE Trans Contr Syst Technol, 21(5):1731–1744. https://doi.org/10.1109/TCST.2012.2218815CrossRefGoogle Scholar
  42. Wang Q, Ran MP, Dong CY, 2016. Robust partial integrated guidance and control for missiles via extended state observer. ISA Trans, 65:27–36. https://doi.org/10.1016/j.isatra.2016.08.017CrossRefGoogle Scholar
  43. Wang XH, Yadav V, Balakrishnan SN, 2007. Cooperative UAV formation flying with obstacle/collision avoidance. IEEE Trans Contr Syst Technol, 15(4):672–679. https://doi.org/10.1109/TCST.2007.899191CrossRefGoogle Scholar
  44. Yang AL, Naeem W, Irwin GW, et al., 2014. Stability analysis and implementation of a decentralized formation control strategy for unmanned vehicles. IEEE Trans Contr Syst Technol, 22(2):706–720. https://doi.org/10.1109/TCST.2013.2259168CrossRefGoogle Scholar
  45. Zhang HW, Lewis FL, 2012. Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics. Automatica, 48(7):1432–1439. https://doi.org/10.1016/j.automatica.2012.05.008MathSciNetCrossRefzbMATHGoogle Scholar
  46. Zheng Q, Gao LQ, Gao ZQ, 2012. On validation of extended state observer through analysis and experimentation. J Dynam Syst Meas Contr, 134(2):024505. https://doi.org/10.1115/1.4005364CrossRefGoogle Scholar
  47. Zhu B, Zaini AHB, Xie LH, 2017. Distributed guidance for interception by using multiple rotary-wing unmanned aerial vehicles. IEEE Trans Ind Electron, 64(7):5648–5656. https://doi.org/10.1109/TIE.2017.2677313CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations