Advertisement

An execution control method for the Aerostack aerial robotics framework

  • Martin MolinaEmail author
  • Alberto Camporredondo
  • Hriday Bavle
  • Alejandro Rodriguez-Ramos
  • Pascual Campoy
Article
  • 57 Downloads

Abstract

Execution control is a critical task of robot architectures which has a deep impact on the quality of the final system. In this study, we describe a general method for execution control, which is a part of the Aerostack software framework for aerial robotics, and present technical challenges for execution control and design decisions to develop the method. The proposed method has an original design combining a distributed approach for execution control of behaviors (such as situation checking and performance monitoring) and centralizes coordination to ensure consistency of the concurrent execution. We conduct experiments to evaluate the method. The experimental results show that the method is general and usable with acceptable development efforts to efficiently work on different types of aerial missions. The method is supported by standards based on a robot operating system (ROS) contributing to its general use, and an open-source project is integrated in the Aerostack framework. Therefore, its technical details are fully accessible to developers and freely available to be used in the development of new aerial robotic systems.

Key words

Aerial robotics Control architecture Behavior-based control Executive system 

CLC number

TP242.6 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alami R, Chatila R, Fleury S, et al., 1998. An architecture for autonomy. Int J Robot Res, 17(4):315–337. https://doi.org/10.1177/027836499801700402CrossRefGoogle Scholar
  2. Allgeuer P, Behnke S, 2013. Hierarchical and state-based architectures for robot behavior planning and control. Proc 8th Workshop on Humanoid Soccer Robots and 13th IEEE-RAS Int Conf on Humanoid Robots, p.1–6.Google Scholar
  3. Arkin RC, 1998. Behavior-Based Robotics (Intelligent Robotics and Autonomous Agents). MIT Press, Cambridge, USA.Google Scholar
  4. Bavle H, Sanchez-Lopez JL, de la Puente P, et al., 2018. Fast and robust flight altitude estimation of multirotor UAVs in dynamic unstructured environments using 3D point cloud sensors. Aerospace, 5(3):94. https://doi.org/10.3390/aerospace5030094CrossRefGoogle Scholar
  5. Bonasso RP, Firby RJ, Gat E, et al., 1997. Experiences with an architecture for intelligent, reactive agents. J Exp Theor Artif Intell, 9(2-3):237–256. https://doi.org/10.1080/095281397147103CrossRefGoogle Scholar
  6. Brooks R, 1986. A robust layered control system for a mobile robot. IEEE J Rob Autom, 2(1), 14–23.CrossRefGoogle Scholar
  7. Firby RJ, 1989. Adaptive Execution in Complex Dynamic Worlds. PhD Thesis, Yale University, New Haven, USA.Google Scholar
  8. Furrer F, Burri M, Achtelik M, et al., 2016. RotorS—a modular gazebo MAV simulator framework. In: Koubaa A (Ed.), Robot Operating System (ROS). Springer, Cham, p.595–625. https://doi.org/10.1007/978-3-319-26054-9_23CrossRefGoogle Scholar
  9. Gat E, 1992. Integrating planning and reacting in a heterogeneous asynchronous architecture for controlling realworld mobile robots. Proc 10th National Conf on Artificial Intelligence, p.809–815.Google Scholar
  10. Gat E, 1996. ESL: a language for supporting robust plan execution in embedded autonomous agents. IEEE Aerospace Conf, p.319–324. https://doi.org/10.1109/AERO.1997.574422Google Scholar
  11. Gat E, 1998. On three-layer architectures. In: Kortenkamp D, Bonnasso RP, Murphy R (Eds.), Artificial Intelligence and Mobile Robots. MIT Press, Cambridge, USA, p.195–210.Google Scholar
  12. Ingrand F, Py F, 2002. An execution control system for autonomous robots. Proc IEEE Int Conf on Robotics and Automation, p.1333–1338. https://doi.org/10.1109/ROBOT.2002.1014728Google Scholar
  13. Kortenkamp D, Simmons R, Brugali D, 2008. Robotic systems architectures and programming. In: Siciliano B, Khatib O (Eds.), Springer Handbook of Robotics. Springer Berlin Heidelberg, p.187–206. https://doi.org/10.1007/978-3-540-30301-5_9CrossRefGoogle Scholar
  14. Mittal S, Frayman F, 1989. Towards a generic model of configuration tasks. 11th Int Joint Conf on Artificial Intelligence, p.1395–1401.Google Scholar
  15. Molina M, Suarez-Fernandez RA, Sampedro C, et al., 2017. TML: a language to specify aerial robotic missions for the framework Aerostack. Int J Intell Comput Cybern, 10(4):491–512. https://doi.org/10.1108/IJICC-03-2017-0025CrossRefGoogle Scholar
  16. Molina M, Frau P, Maravall D, 2018. A collaborative approach for surface inspection using aerial robots and computer vision. Sensors, 18(3):893. https://doi.org/10.3390/s18030893CrossRefGoogle Scholar
  17. Rodriguez-Ramos A, Sampedro C, Bavle H, et al., 2017. Towards fully autonomous landing on moving platforms for rotary unmanned aerial vehicles. Int Conf on Unmanned Aircraft Systems, p.170–178. https://doi.org/10.1109/ICUAS.2017.7991438Google Scholar
  18. Rothenstein AL, 2002. A Mission Plan Specification Language for Behaviour-Based Robots. MS Thesis, University of Toronto, Toronto, Canada.Google Scholar
  19. Rutten E, 2001. A framework for using discrete control synthesis in safe robotic programming and teleoperation. Proc IEEE Int Conf on Robotics and Automation, p.4104–4109. https://doi.org/10.1109/ROBOT.2001.933259Google Scholar
  20. Sampedro C, Bavle H, Sanchez-Lopez JL, et al., 2016. A flexible and dynamic mission planning architecture for UAV swarm coordination. Int Conf on Unmanned Aircraft Systems, p.355–363. https://doi.org/10.1109/ICUAS.2016.7502669Google Scholar
  21. Sampedro C, Rodriguez-Ramos A, Bavle H, et al., 2018. A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques. J Intell Robot Syst, p.1–27. https://doi.org/10.1007/s10846-018-0898-1Google Scholar
  22. Sanchez-Lopez JL, Molina M, Bavle H, et al., 2017. A multilayered component-based approach for the development of aerial robotic systems: the aerostack framework. J Intell Robot Syst, 88(2-4):683–709. https://doi.org/10.1007/s10846-017-0551-4CrossRefGoogle Scholar
  23. Suárez Fernández RA, Sanchez-Lopez JL, Sampedro C, et al., 2016. Natural user interfaces for human-drone multimodal interaction. Int Conf on Unmanned Aircraft Systems, p.1013–1022. https://doi.org/10.1109/ICUAS.2016.7502665Google Scholar
  24. Verma V, Estlin T, Jónsson A, et al., 2005. Plan execution interchange language (PLEXIL) for executable plans and command sequences. Int Symp on Artificial Intelligence, Robotics and Automation in Space, p.1–8.Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Artificial IntelligenceUniversidad Politécnica de MadridMadridSpain
  2. 2.Centre for Automation and RoboticsUniversidad Politécnica de MadridMadridSpain

Personalised recommendations