Advertisement

Performance analysis of two EM-based measurement bias estimation processes for tracking systems

  • Zhi-hua LuEmail author
  • Meng-yao Zhu
  • Qing-wei Ye
  • Yu Zhou
Article
  • 14 Downloads

Abstract

In target tracking, the measurements collected by sensors can be biased in some real scenarios, e.g., due to systematic error. To accurately estimate the target trajectory, it is essential that the measurement bias be identified in the first place. We investigate the iterative bias estimation process based on the expectation-maximization (EM) algorithm, for cases where sufficiently large numbers of measurements are at hand. With the assistance of extended Kalman filtering and smoothing, we derive two EM estimation processes to estimate the measurement bias which is formulated as a random variable in one state-space model and a constant value in another. More importantly, we theoretically derive the global convergence result of the EM-based measurement bias estimation and reveal the link between the two proposed EM estimation processes in the respective state-space models. It is found that the bias estimate in the second state-space model is more accurate and of less complexity. Furthermore, the EM-based iterative estimation converges faster in the second state-space model than in the first one. As a byproduct, the target trajectory can be simultaneously estimated with the measurement bias, after processing a batch of measurements. These results are confirmed by our simulations.

Key words

Non-linear state-space model Measurement bias Extended Kalman filter Extended Kalman smoothing Expectation-maximization (EM) algorithm 

CLC number

TP73 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blackman S, Popoli R, 1999. Design and Analysis of Modern Tracking Systems. Artech House, Boston, USA.zbMATHGoogle Scholar
  2. Bugallo MF, Lu T, Djuric PM, 2007. Bearings-only tracking with biased measurements. Proc 2nd IEEE Int Workshop on Computational Advances in Multi-sensor Adaptive Processing, p.265–268. https://doi.org/10.1109/CAMSAP.2007.4498016 Google Scholar
  3. Fortunati S, Farina A, Gini F, et al., 2011. Least squares estimation and Cramér-Rao type lower bounds for relative sensor registration process. IEEE Trans Signal Process, 59(3):1075–1087. https://doi.org/10.1109/TSP.2010.2097258 MathSciNetCrossRefzbMATHGoogle Scholar
  4. Gustafsson F, Gunnarsson F, 2005. Mobile positioning using wireless networks: possibilities and fundamental limitations based on available wireless network measurements. IEEE Signal Process Mag, 22(4):41–53. https://doi.org/10.1109/MSP.2005.1458284 CrossRefGoogle Scholar
  5. Hammes U, Zoubir AM, 2010. Robust mobile terminal tracking in NLOS environments based on data association. IEEE Trans Signal Process, 58(11):5872–5882. https://doi.org/10.1109/TSP.2010.2063425 MathSciNetCrossRefzbMATHGoogle Scholar
  6. Haykin S, 2001. Kalman Filtering and Neural Networks. Wiley, New York, USA.CrossRefGoogle Scholar
  7. Hernandez ML, Farina A, Ristic B, 2006. PCRLB for tracking in cluttered environments: measurement sequence conditioning approach. IEEE Trans Aerosp Electron Syst, 42(2):680–704. https://doi.org/10.1109/TAES.2006.1642582 CrossRefGoogle Scholar
  8. Huang DL, Leung H, 2010. An EM-IMM method for simultaneous registration and fusion of multiple radars and ESM sensors. In: Mukhopadhyay SC, Leung H (Eds.), Advances in Wireless Sensors and Sensor Networks. Springer Berlin Heidelberg, p.101–124.CrossRefGoogle Scholar
  9. Karunaratne BS, Morelande MR, Moran B, 2012. Target tracking in a multipath environment. Proc IET Int Conf on Radar Systems, p.1–6. https://doi.org/10.1049/cp.2012.1645 Google Scholar
  10. Li TC, Ekpenyong A, Huang YF, 2006. Source localization and tracking using distributed asynchronous sensors. IEEE Trans Signal Process, 54(10):3991–4003. https://doi.org/10.1109/TSP.2006.880213 CrossRefzbMATHGoogle Scholar
  11. Li TC, Su JY, Liu W, et al., 2017. Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond. Front Inform Technol Electron Eng, 18(12):1913–1939. https://doi.org/10.1631/FITEE.1700379 CrossRefGoogle Scholar
  12. Li W, Leung H, Zhou YF, 2004. Space-time registration of radar and ESM using unscented Kalman filter. IEEE Trans Aerosp Electron Syst, 40(3):824–836. https://doi.org/10.1109/TAES.2004.1337457 CrossRefGoogle Scholar
  13. Li XR, Jilkov VP, 2003. Survey of maneuvering target tracking. Part I. Dynamic models. IEEE Trans Aerosp Electron Syst, 39(4):1333–1364. https://doi.org/10.1109/TAES.2003.1261132 CrossRefGoogle Scholar
  14. Li ZH, Chen SY, Leung H, et al., 2004. Joint data association, registration, and fusion using EM-KF. IEEE Trans Aerosp Electron Syst, 46(2):496–507. https://doi.org/10.1109/TAES.2010.5461637 CrossRefGoogle Scholar
  15. Lian F, Han C, Liu W, et al., 2011. Joint spatial registration and multi-target tracking using an extended probability hypothesis density filter. IET Radar Sonar Navig, 5(4): 441–448. https://doi.org/10.1049/iet-rsn.2010.0057 CrossRefGoogle Scholar
  16. Lin XD, Bar-Shalom Y, Kirubarajan T, 2004. Exact multisensor dynamic bias estimation with local tracks. IEEE Trans Aerosp Electron Syst, 40(2):576–590. https://doi.org/10.1109/TAES.2004.1310006 CrossRefGoogle Scholar
  17. Matisko P, Havlena V, 2012. Cramér-Rao bounds for estimation of linear system noise covariances. J Mech Eng Autom, 2(2):6–11. https://doi.org/10.5923/j.jmea.20120202.02 CrossRefGoogle Scholar
  18. Moon TK, 1996. The expectation-maximization algorithm. IEEE Signal Process Mag, 13(6):47–60. https://doi.org/10.1109/79.543975 CrossRefGoogle Scholar
  19. Okello NN, Challa S, 2004. Joint sensor registration and track-to-track fusion for distributed trackers. IEEE Trans Aerosp Electron Syst, 40(3):808–823. https://doi.org/10.1109/TAES.2004.1337456 CrossRefGoogle Scholar
  20. Okello NN, Ristic B, 2003. Maximum likelihood registration for multiple dissimilar sensors. IEEE Trans Aerosp Electron Syst, 39(3):1074–1083. https://doi.org/10.1109/TAES.2003.1238759 CrossRefGoogle Scholar
  21. Särkkä S, 2013. Bayesian Filtering and Smoothing. Cambridge University Press, Cambridge, UK.CrossRefzbMATHGoogle Scholar
  22. Savic V, Wymeersch H, Larsson E, 2016. Target tracking in confined environments with uncertain sensor positions. IEEE Trans Veh Technol, 65(2):870–882. https://doi.org/10.1109/TVT.2015.2404132 CrossRefGoogle Scholar
  23. Sayed AH, Tarighat A, Khajehnouri N, 2005. Networkbased wireless location: challenges faced in developing techniques for accurate wireless location information. IEEE Signal Process Mag, 22(4):24–40. https://doi.org/10.1109/MSP.2005.1458275 CrossRefGoogle Scholar
  24. Shumway RH, Stoffer DS, 1982. An approach to time series smoothing and forecasting using the EM algorithm. J Time Ser Anal, 3(4):253–264. https://doi.org/10.1111/j.1467-9892.1982.tb00349.x CrossRefzbMATHGoogle Scholar
  25. Stinco P, Greco MS, Gini F, et al., 2013. Posterior Cramér-Rao lower bounds for passive bistatic radar tracking with uncertain target measurements. Signal Process, 93(12):3528–3540. https://doi.org/10.1016/j.sigpro.2013.02.021 CrossRefGoogle Scholar
  26. Tzikas DG, Likas CL, Galatsanos NP, 2008. The variational approximation for Bayesian inference. IEEE Signal Process Mag, 25(6):131–146. https://doi.org/10.1109/MSP.2008.929620 CrossRefGoogle Scholar
  27. Zhou L, Liu XX, Hu ZT, et al., 2017. Joint estimation of state and system biases in non-linear system. IET Signal Process, 11(1):10–16. https://doi.org/10.1049/iet-spr.2015.0068 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Information Science and EngineeringNingbo UniversityNingboChina
  2. 2.School of Communication and Information EngineeringShanghai UniversityShanghaiChina

Personalised recommendations