Advertisement

Underwater acoustic communication and the general performance evaluation criteria

  • Jian-guo Huang
  • Han Wang
  • Cheng-bing He
  • Qun-fei Zhang
  • Lian-you Jing
Review
  • 75 Downloads

Abstract

Driven by the huge demand to explore oceans, underwater wireless communications have been rapidly developed in the past few decades. Due to the complex physical characteristics of water, acoustic wave is the only media available for underwater wireless communication at any distance. As a result, underwater acoustic communication (UAC) is the major research field in underwater wireless communication. In this paper, characteristics of underwater acoustic channels are first introduced and compared with terrestrial communication to demonstrate the difficulties in UAC research. To give a general impression of the UAC, current important research areas are mentioned. Furthermore, different principal modulation-based schemes for short- and medium-range communications with high data rates are investigated and summarized. To evaluate the performance of UAC systems in general, three criteria are presented based on the research publications and our years of experience in high-rate short- to medium-range communications. These three criteria provide useful tools to generally guide the design and evaluate the performance of underwater acoustic communication systems.

Key words

Underwater acoustic communication Underwater acoustic channels High data rate Communication range Bandwidth efficiency General evaluation criterion 

CLC number

TP929.3 

References

  1. Aydinlik M, Ozdemir AT, Stajanovic M, 2008. A physical layer implementation on reconfigurable underwater acoustic modem. OCEANS, p.1–4.  https://doi.org/10.1109/OCEANS.2008.5152044 Google Scholar
  2. Bejjani E, Belfiore JC, 1996. Multicarrier coherent communications for the underwater acoustic channel. OCEANS, p.1125–1130.  https://doi.org/10.1109/OCEANS.1996.569060 Google Scholar
  3. Benson CR, Ryan MJ, Frater MR, 2012. Towards robust high data-rate hydro-acoustic modems. OCEANS, p.1–3.  https://doi.org/10.1109/OCEANS.2012.6404887 Google Scholar
  4. Berger CR, Zhou S, Preisig JC, et al., 2009. Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing. OCEANS, p.1–8.  https://doi.org/10.1109/OCEANSE.2009.5278228 zbMATHGoogle Scholar
  5. Beygi S, Mitra U, 2012. Optimal Bayesian resampling for OFDM signaling over multi-scale multi-lag channels. IEEE Signal Process Lett, 20(11):1118–1121.  https://doi.org/10.1109/LSP.2013.2282339 Google Scholar
  6. Cai LF, Pan X, Xu W, et al., 2009. Underwater acoustic MIMO communication based on active time reversal. Conf on Postgraduate Research in Microelectronics Electronics, p.45–48.  https://doi.org/10.1109/PRIMEASIA.2009.5397452 Google Scholar
  7. Candy JV, Poggio AJ, Chambers DH, et al., 2005. Multichannel time-reversal processing for acoustic communications in a highly reverberant environment. J Acoust Soc Am, 118(4):2339–2354.  https://doi.org/10.1121/1.2011167 Google Scholar
  8. Carrascosa PC, Stojanovic M, 2010. Adaptive channel estimation and data detection for underwater acoustic MIMO-OFDM systems. IEEE J Ocean Eng, 35(3):635–646.  https://doi.org/10.1109/JOE.2010.2052326 Google Scholar
  9. Carroll P, Zhou SL, Mahmood K, et al., 2012. On-demand asynchronous localization for underwater sensor networks. OCEANS, p.1–4.  https://doi.org/10.1109/OCEANS.2012.6404938 Google Scholar
  10. Casey K, Lim A, Dozier G, 2008. A sensor network architecture for tsunami detection and response. Int J Distr Sens Netw, 4(1):28–43.  https://doi.org/10.1080/15501320701774675 Google Scholar
  11. Catipovic J, Deffenbaugh M, Freitag L, et al., 1989. An acoustic telemetry system for deep ocean mooring data acquisition and control. OCEANS, p.887–892.  https://doi.org/10.1109/OCEANS.1989.586702 Google Scholar
  12. Chen ZR, Zheng YR, Wang JT, et al., 2013. Synchronization and Doppler scale estimation with dual PN padding TDS-OFDM for underwater acoustic communication. OCEANS, p.1–4.  https://doi.org/10.23919/OCEANS.2013.6741170 Google Scholar
  13. Cho SE, Song HC, Hodgkiss WS, 2013. Multiuser acoustic communications with mobile users. J Acoust Soc Am, 133(2):880–890.  https://doi.org/10.1121/1.4773267 Google Scholar
  14. Climent S, Capella JV, Meratnia N, et al., 2012. Underwater sensor networks: a new energy efficient and robust architecture. Sensors, 12(1):704–731.  https://doi.org/10.3390/s120100704 Google Scholar
  15. Climent S, Sanchez A, Capella JV, et al., 2014. Underwater acoustic wireless sensor networks: advances and future trends in physical, MAC and routing layers. Sensors, 14(1):795–833.  https://doi.org/10.3390/s140100795 Google Scholar
  16. Ebihara T, Leus G, 2016. Doppler-resilient orthogonal signal-division multiplexing for underwater acoustic communication. IEEE J Ocean Eng, 41(2):408–427.  https://doi.org/10.1109/JOE.2015.2454411 Google Scholar
  17. Ebihara T, Mizutani K, 2014. Underwater acoustic communication with an orthogonal signal division multiplexing scheme in doubly spread channels. IEEE J Ocean Eng, 39(1):47–58.  https://doi.org/10.1109/JOE.2013.2245273 Google Scholar
  18. Edelmann GF, Akal T, Hodgkiss WS, et al., 2002. An initial demonstration of underwater acoustic communication using time reversal. IEEE J Ocean Eng, 27(3):602–609.  https://doi.org/10.1109/JOE.2002.1040942 Google Scholar
  19. Edelmann GF, Song HC, Kim S, et al., 2005. Underwater acoustic communications using time reversal. IEEE J Ocean Eng, 30(4):852–864.  https://doi.org/10.1109/JOE.2005.862137 Google Scholar
  20. Falconer D, Ariyavisitakul SL, Benyamin-Seeyar A, et al., 2002. Frequency domain equalization for single-carrier broadband wireless systems. IEEE Commun Mag, 40(4):58–66.  https://doi.org/10.1109/35.995852 Google Scholar
  21. Fan GY, Chen HF, Xie L, et al., 2013. A hybrid reservation-based MAC protocol for underwater acoustic sensor networks. Ad Hoc Netw, 11(3):1178–1192.  https://doi.org/10.1016/j.adhoc.2013.01.002 Google Scholar
  22. Fink M, 2001. Time reversed acoustics. Phys Today, 50(3):34–40.  https://doi.org/10.1063/1.881692 Google Scholar
  23. Freitag L, Stojanovic M, Kilfoyle D, et al., 2004. High-rate phase-coherent acoustic communication: a review of a decade of research and a perspective on future challenges. Proc 7th European Conf on Underwater Acoustic, p.1–6.Google Scholar
  24. Green MD, Rice JA, 2000. Channel-tolerant FH-MFSK acoustic signaling for undersea communications and networks. IEEE J Ocean Eng, 25(1):28–39.  https://doi.org/10.1109/48.820734 Google Scholar
  25. Guo Y, Liu Y, 2013. Localization for anchor-free underwater sensor networks. Comput Electr Eng, 39(6):1812–1821.  https://doi.org/10.1016/j.compeleceng.2013.02.001 Google Scholar
  26. Han J, Chepuri SP, Zhang QF, et al., 2018. Iterative pervector equalization for orthogonal signal-division multiplexing over time-varying underwater acoustic channels. IEEE J Ocean Eng, PP(99):1–16.  https://doi.org/10.1109/JOE.2017.2787898 Google Scholar
  27. Hao J, Zheng YR, Wang JT, et al., 2012. Dual PN padding TDS-OFDM for underwater acoustic communication. OCEANS, p.1–4.  https://doi.org/10.1109/OCEANS.2012.6404998 Google Scholar
  28. Hayward TJ, Yang TC, 2007. Single- and multi-channel underwater acoustic communication channel capacity: a computational study. J Acoust Soc Am, 122(3):1652.  https://doi.org/10.1121/1.2749709 Google Scholar
  29. He C, Huang J, Zhang Q, et al., 2009. Single carrier frequency domain equalizer for underwater wireless communication. WRI Int Conf on Communications and Mobile Computing, p.186–190.  https://doi.org/10.1109/CMC.2009.24 Google Scholar
  30. He C, Jing L, Xi R, et al., 2017. Improving passive time reversal underwater acoustic communications using subarray processing. Sensors, 17(4):E937.  https://doi.org/10.3390/s17040937 Google Scholar
  31. Huang J, Sun J, He C, et al., 2005. Experimental research on high rate OFDM underwater acoustic communication. National Academic Conf on Communication Theory and Signal Processing, p.311–315 (in Chinese).Google Scholar
  32. Huang J, He C, Zhang Q, et al., 2007. Cyclic prefixed single carrier transmission for underwater acoustic communication. IEEE TENCON, p.1–4.  https://doi.org/10.1109/TENCON.2007.4428871 Google Scholar
  33. Huang J, Zhou SL, Willett P, 2008. Nonbinary LDPC coding for multicarrier underwater acoustic communication. IEEE J Sel Areas Commun, 26(9):1684–1696.  https://doi.org/10.1109/JSAC.2008.081208 Google Scholar
  34. Huang J, Huang JZ, Berger CR, et al., 2010. Iterative sparse channel estimation and decoding for underwater MIMO-OFDM. EURASIP J Adv Signal Process, 2010(1):460379.  https://doi.org/10.1155/2010/460379 Google Scholar
  35. Huang J, Zhou S, Huang J, et al., 2011. Progressive intercarrier interference equalization for OFDM transmission over time-varying underwater acoustic channels. IEEE J Sel Top Signal Process, 5(8):1524–1536.  https://doi.org/10.1109/JSTSP.2011.2160040 Google Scholar
  36. Jurdak R, Aguiar P, Baldi P, et al., 2007. Software modems for underwater sensor networks. OCEANS, p.1–6.  https://doi.org/10.1109/OCEANSE.2007.4302209 Google Scholar
  37. Kang T, Iltis RA, 2008. Iterative carrier frequency offset and channel estimation for underwater acoustic OFDM systems. IEEE J Sel Areas Commun, 26(9):1650–1661.  https://doi.org/10.1109/JSAC.2008.081205 Google Scholar
  38. Kilfoyle DB, Baggeroer AB, 2000. The state of the art in underwater acoustic telemetry. IEEE J Ocean Eng, 25(1):4–27.  https://doi.org/10.1109/48.820733 Google Scholar
  39. Kilfoyle DB, Preisig JC, Baggeroer AB, 2003. Spatial modulation over partially coherent multiple-input/multiple-output channels. IEEE Trans Signal Process, 51(3):794–804.  https://doi.org/10.1109/TSP.2002.808118 Google Scholar
  40. Kilfoyle DB, Preisig JC, Baggeroer AB, 2005. Spatial modulation experiments in the underwater acoustic channel. IEEE J Ocean Eng, 30(2):406–415.  https://doi.org/10.1109/JOE.2004.834168 Google Scholar
  41. Kredo K II, Djukic P, Mohapatra P, 2009. Stump: exploiting position diversity in the staggered TDMA underwater MAC protocol. IEEE INFOCOM, p.2961–2965.  https://doi.org/10.1109/INFCOM.2009.5062267 Google Scholar
  42. Kumar P, Kumar P, Priyadarshini P, et al., 2012. Underwater acoustic sensor network for early warning generation. OCEANS, p.1–6.  https://doi.org/10.1109/OCEANS.2012.6405009 Google Scholar
  43. Kuperman WA, Hodgkiss WS, Song HC, et al., 1998. Phase conjugation in the ocean: experimental demonstration of an acoustic time-reversal mirror. J Acoust Soc Am, 103(5):25–40.  https://doi.org/10.1121/1.423233 Google Scholar
  44. Labat J, Lapierre G, Trubuil J, 2003. Iterative equalization for underwater acoustic channels potentiality for the tpident system. OCEANS, p.1547–1553.  https://doi.org/10.1109/OCEANS.2003.178098 Google Scholar
  45. Lam WK, Ormondroyd RF, 1997. A coherent COFDM modulation system for a time-varying frequency-selective underwater acoustic channel. 7th Int Conf on Electronic Engineering in Oceanography—Technology Transfer from Research to Industry, p.198–203.  https://doi.org/10.1049/cp:19970684 Google Scholar
  46. Leus G, van Walree PA, 2008. Multiband OFDM for covert acoustic communications. IEEE J Sel Areas Commun, 26(9):1662–1673.  https://doi.org/10.1109/JSAC.2008.081206 Google Scholar
  47. Li BS, Zhou SL, Stojanovic M, et al., 2006. Pilot-tone based ZP-OFDM demodulation for an underwater acoustic channel. OCEANS, p.1–5.  https://doi.org/10.1109/OCEANS.2006.306838 Google Scholar
  48. Li BS, Zhou SL, Stojanovic M, et al., 2007a. MIMO-OFDM over an underwater acoustic channel. OCEANS, p.1–6.  https://doi.org/10.1109/OCEANS.2007.4449296 Google Scholar
  49. Li BS, Zhou SL, Stojanovic M, et al., 2007b. Non-uniform Doppler compensation for zero-padded OFDM over fast-varying underwater acoustic channels. OCEANS, p.1–6.  https://doi.org/10.1109/OCEANSE.2007.4302478 Google Scholar
  50. Li BS, Huang J, Zhou SL, et al., 2008a. Further results on high-rate MIMO-OFDM underwater acoustic communications. OCEANS, p.1–6.  https://doi.org/10.1109/OCEANS.2008.5152056 Google Scholar
  51. Li BS, Zhou SL, Stojanovic M, et al., 2008b. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts. IEEE J Ocean Eng, 33(2):198–209.  https://doi.org/10.1109/JOE.2008.920471 Google Scholar
  52. Li BS, Huang J, Zhou SL, et al., 2009. MIMO-OFDM for high-rate underwater acoustic communications. IEEE J Ocean Eng, 34(4):634–644.  https://doi.org/10.1109/JOE.2009.2032005 Google Scholar
  53. Li JH, Zakharov YV, 2018. Efficient use of space-time clustering for underwater acoustic communications. IEEE J Ocean Eng, 43(1):173–183.  https://doi.org/10.1109/JOE.2017.2688558 Google Scholar
  54. Li Y, Huang HN, 2010. The design and experiment of a software-defined acoustic modem for underwater sensor network. OCEANS, p.1–4.  https://doi.org/10.1109/OCEANSSYD.2010.5603525 Google Scholar
  55. Muquet B, Wang ZD, Giannakis GB, et al., 2002. Cyclic prefixing or zero padding for wireless multicarrier transmissions? IEEE Trans Commun, 50(12):2136–2148.  https://doi.org/10.1109/TCOMM.2002.806518 Google Scholar
  56. Otnes R, Eggen TH, 2008. Underwater acoustic communications: long-term test of turbo equalization in shallow water. IEEE J Ocean Eng, 33(3):321–334.  https://doi.org/10.1109/JOE.2008.925893 Google Scholar
  57. Pajovic M, Preisig JC, 2015. Performance analysis and optimal design of multichannel equalizer for underwater acoustic communications. IEEE J Ocean Eng, 40(4):759–774.  https://doi.org/10.1109/JOE.2015.2469935 Google Scholar
  58. Pompili D, Akyildiz IF, 2009. Overview of networking protocols for underwater wireless communications. IEEE Commun Mag, 47(1):97–102.  https://doi.org/10.1109/MCOM.2009.4752684 Google Scholar
  59. Pompili D, Melodia T, Akyildiz IF, 2009. A CDMA-based medium access control for underwater acoustic sensor networks. IEEE Trans Wirel Commun, 8(4):1899–1909.  https://doi.org/10.1109/TWC.2009.080195 Google Scholar
  60. Porter MB, Liu YC, 1994. Finite-element ray tracing. Int Conf on Theoretical and Computational Acoustics, p.947–956.Google Scholar
  61. Porter MB, Qarabaqi P, Stojanovic M, et al., 2014. BELLHOP. https://doi.org/oalib.hlsresearch.com/Rays/index.html Google Scholar
  62. Preisig JC, 2005. Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment. J Acoust Soc Am, 118(1):263–278.  https://doi.org/10.1121/1.1907106 Google Scholar
  63. Qarabaqi P, Stojanovic M, 2013. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels. IEEE J Ocean Eng, 38(4):701–717.  https://doi.org/10.1109/JOE.2013.2278787 Google Scholar
  64. Rafati A, Lou H, Xiao CS, 2014. Soft-decision feedback turbo equalization for LDPC-coded MIMO underwater acoustic communications. IEEE J Ocean Eng, 39(1):90–99.  https://doi.org/10.1109/JOE.2013.2241933 Google Scholar
  65. Riedl T, Singer A, 2013. Must-read: multichannel sample-by-sample turbo resampling equalization and decoding. OCEANS, p.1–5.  https://doi.org/10.1109/oceans-bergen.2013.6608187 Google Scholar
  66. Rouseff D, Badiey M, Song AJ, 2007. Propagation physics effects on coherent underwater acoustic communications: results from KauaiEx 2003. OCEANS, p.1–4.  https://doi.org/10.1109/OCEANSE.2007.4302269 Google Scholar
  67. Roy S, Duman TM, Ghazikhanian L, et al., 2004. Enhanced underwater acoustic communication performance using space-time coding and processing. OCEANS, p.26–33.  https://doi.org/10.1109/OCEANS.2004.1402890 Google Scholar
  68. Roy S, Duman TM, McDonald V, et al., 2007. High-rate communication for underwater acoustic channels using multiple transmitters and space time coding: receiver structures and experimental results. IEEE J Ocean Eng, 32(3):663–688.  https://doi.org/10.1109/JOE.2007.899275 Google Scholar
  69. Roy S, Duman TM, Mcdonald VK, 2009. Error rate improvement in underwater MIMO communications using sparse partial response equalization. IEEE J Ocean Eng, 34(2):181–201.  https://doi.org/10.1109/JOE.2009.2014658 Google Scholar
  70. Rugini L, Banelli P, Leus G, 2006. Low-complexity banded equalizers for OFDM systems in Doppler spread channels. EURASIP J Adv Signal Process, 2006:07404.  https://doi.org/10.1155/ASP/2006/67404 Google Scholar
  71. Sang EF, Xu XK, Qiao G, et al., 2009. Application study of turbo code for underwater acoustic communication based on OFDM. J Harbin Eng Univ, 30(1):60–66 (in Chinese).  https://doi.org/10.3969/j.issn.1006-7043.2009.01.011 Google Scholar
  72. Scussel KF, Rice JA, Merriam S, 1997. A new MFSK acoustic modem for operation in adverse underwater channels. OCEANS, p.247–254.  https://doi.org/10.1109/OCEANS.1997.634370 Google Scholar
  73. Sharif BS, Neasham J, Hinton OR, et al., 2000. A computationally efficient Doppler compensation system for underwater acoustic communications. IEEE J Ocean Eng, 25(1):52–61.  https://doi.org/10.1109/48.820736 Google Scholar
  74. Shimura T, Ochi H, Watanabe Y, et al., 2010. Experiment results of time-reversal communication at the range of 300 km. Jpn J Appl Phys, 49(7):07HG11.  https://doi.org/10.1143/JJAP.49.07HG11 Google Scholar
  75. Shimura T, Ochi H, Watanabe Y, et al., 2012a. Demonstration of time reversal communication combined with spread spectrum at the range of 900 km in deep ocean. Acoust Sci Technol, 33(2):113–116.  https://doi.org/10.1250/ast.33.113 Google Scholar
  76. Shimura T, Watanabe Y, Ochi H, et al., 2012b. Long-range time reversal communication in deep water: experimental results. J Acoust Soc Am, 132(1):EL49–EL53.  https://doi.org/10.1121/1.4730038 Google Scholar
  77. Shimura T, Kida Y, Deguchi M, et al., 2017. Experimental study on multiple-input/multiple-output communication with time reversal in deep ocean. Jpn J Appl Phys, 56(7S1):07JG03.  https://doi.org/10.7567/JJAP.56.07JG03 Google Scholar
  78. Song A, Badiey M, 2012. Time reversal acoustic communication for multiband transmission. J Acoust Soc Am, 131(4):EL283–EL288.  https://doi.org/10.1121/1.3690965 Google Scholar
  79. Song A, Badiey M, McDonald VK, et al., 2011. Time reversal receivers for high data rate acoustic multiple-input multiple-output communication. IEEE J Ocean Eng, 36(4):525–538.  https://doi.org/10.1109/JOE.2011.2166660 Google Scholar
  80. Song HC, Hodgkiss WS, 2013. Efficient use of bandwidth for underwater acoustic communication. J Acoust Soc Am, 134(2):905–908.  https://doi.org/10.1121/1.4812762 Google Scholar
  81. Song HC, Hodgkiss WS, Kuperman WA, et al., 2006. Improvement of time-reversal communications using adaptive channel equalizers. IEEE J Ocean Eng, 31(2):487–496.  https://doi.org/10.1109/JOE.2006.876139 Google Scholar
  82. Stojanovic M, 1995. Underwater acoustic communications. Proc Electro/Int, p.435–440.  https://doi.org/10.1109/ELECTR.1995.471021 Google Scholar
  83. Stojanovic M, 1996. Recent advances in high-speed underwater acoustic communications. IEEE J Ocean Eng, 21(2):125–136.  https://doi.org/10.1109/48.486787 Google Scholar
  84. Stojanovic M, 2006a. Low complexity OFDM detector for underwater acoustic channels. OCEANS, p.1–6.  https://doi.org/10.1109/48.486787 Google Scholar
  85. Stojanovic M, 2006b. On the relationship between capacity and distance in an underwater acoustic communication channel. SIGMOBILE Mob Comput Commun Rev, 11(4):41–47.  https://doi.org/10.1145/1161039.1161049 MathSciNetGoogle Scholar
  86. Stojanovic M, 2008. Underwater acoustic communications: design considerations on the physical layer. 5th Annual Conf on Wireless on Demand Network Systems and Services, p.1–10.  https://doi.org/10.1109/WONS.2008.4459349 Google Scholar
  87. Stojanovic M, Catipovic J, Proakis JG, 1993. Adaptive multichannel combining and equalization for underwater acoustic communications. J Acoust Soc Am, 94(3):1621–1631.  https://doi.org/10.1121/1.408135 Google Scholar
  88. Stojanovic M, Catipovic JA, Proakis JG, 1994. Phase-coherent digital communications for underwater acoustic channels. IEEE J Ocean Eng, 19(1):100–111.  https://doi.org/10.1109/48.289455 Google Scholar
  89. Stojanovic M, Freitag L, Johnson M, 1999. Channel-estimation-based adaptive equalization of underwater acoustic signals. OCEANS, p.590–595.  https://doi.org/10.1109/OCEANS.1999.804768 Google Scholar
  90. Syed AA, Ye W, Heidemann J, et al., 2007. Understanding spatio-temporal uncertainty in medium access with aloha protocols. 2nd Workshop on Underwater Networks, p.41–48.  https://doi.org/10.1145/1287812.1287822 Google Scholar
  91. Tao J, Zheng YR, Xiao CS, et al., 2010. Robust MIMO underwater acoustic communications using turbo block decision-feedback equalization. IEEE J Ocean Eng, 35(4):948–960.  https://doi.org/10.1109/JOE.2010.2077831 Google Scholar
  92. Thornton B, Bodenmann A, Asada A, et al., 2012. Acoustic and visual instrumentation for survey of manganese crusts using an underwater vehicle. OCEANS, p.1–10.  https://doi.org/10.1109/OCEANS.2012.6404789 Google Scholar
  93. Thorp WH, 1967. Analytic description of the low frequency attenuation coefficient. J Acoust Soc Am, 42(1):270.  https://doi.org/10.1121/1.1910566 Google Scholar
  94. Tindle CT, 2002. Wavefronts and waveforms in deep-water sound propagation. J Acoust Soc Am, 112(2):464–475.  https://doi.org/10.1121/1.1489437 Google Scholar
  95. Trevathan J, Johnstone R, Chiffings T, et al., 2012. SEMAT — the next generation of inexpensive marine environmental monitoring and measurement systems. Sensors, 12(7):9711–9748.  https://doi.org/10.3390/s120709711 Google Scholar
  96. van Walree PA, 2013. Propagation and scattering effects in underwater acoustic communication channels. IEEE J Ocean Eng, 38(4):614–631.  https://doi.org/10.1109/JOE.2013.2278913 Google Scholar
  97. Wang ZH, Zhou SL, Giannakis GB, et al., 2012. Frequency-domain oversampling for zero-padded OFDM in underwater acoustic communications. IEEE J Ocean Eng, 37(1):14–24.  https://doi.org/10.1109/JOE.2011.2174070 Google Scholar
  98. Watfa MK, Selman S, Denkilkian H, 2010. UW-MAC: an underwater sensor network MAC protocol. Int J Commun Syst, 23(4):485–506.  https://doi.org/10.1002/dac.1086 Google Scholar
  99. Wei ZF, Huang JG, 2006. MFSK based multi-carrier UWA communication system and lake experiment. Wirel Commun Technol, 15(2):9–13 (in Chinese).  https://doi.org/10.3969/j.issn.1003-8329.2006.02.003 Google Scholar
  100. Wu FF, Huang JG, He CB, 2010. Experimental research on long-range high-speed underwater acoustic communication. Comput Meas Contr, 18(8):1837–1839 (in Chinese).Google Scholar
  101. Xia ML, Xu W, Pan X, 2012. Time reversal based channel tracking for underwater acoustic communications. J Acoust Soc Am, 131(4):3277.  https://doi.org/10.1121/1.4708253 Google Scholar
  102. Xia ML, Rouseff D, Ritcey JA, et al., 2014. Underwater acoustic communication in a highly refractive environment using SC-CFDE. IEEE J Ocean Eng, 39(39):491–499.  https://doi.org/10.1109/JOE.2013.2257232 Google Scholar
  103. Xu ZY, Zakharov YV, Kodanev VP, 2007. Space-time signal processing of OFDM signals in fast-varying underwater acoustic channel. OCEANS, p.1–6.  https://doi.org/10.1109/OCEANSE.2007.4302328 Google Scholar
  104. Yalcuk A, Postalcioglu S, 2015. Evaluation of pool water quality of trout farms by fuzzy logic: monitoring of pool water quality for trout farms. Int J Environ Sci Technol, 12(5):1503–1514.  https://doi.org/10.1007/s13762-014-0536-9 Google Scholar
  105. Yang TC, 2004. Performance comparisons between passive phase conjugation and decision feedback equalizer for underwater acoustic communications. J Acoust Soc Am, 115(5):2505–2506.  https://doi.org/10.1121/1.4783079 MathSciNetGoogle Scholar
  106. Yang TC, 2005. Correlation-based decision-feedback equalizer for underwater acoustic communications. IEEE J Ocean Eng, 30(4):865–880.  https://doi.org/10.1109/JOE.2005.862126 Google Scholar
  107. Yang TC, 2007. A study of spatial processing gain in underwater acoustic communications. IEEE J Ocean Eng, 32(3):689–709.  https://doi.org/10.1109/JOE.2007.897072 Google Scholar
  108. Yang TC, 2012. Properties of underwater acoustic communication channels in shallow water. J Acoust Soc Am, 131(1):129–145.  https://doi.org/10.1121/1.3664053 Google Scholar
  109. Yeo HK, Sharif BS, Hinton OR, et al., 2000. Improved RLS algorithm for time-variant underwater acoustic communications. Electron Lett, 36(2):191–192.  https://doi.org/10.1049/el:20000190 Google Scholar
  110. Yerramalli S, Mitra U, 2011. Optimal resampling of OFDM signals for multiscale-multilag underwater acoustic channels. IEEE J Ocean Eng, 36(1):126–138.  https://doi.org/10.1109/JOE.2010.2093752 Google Scholar
  111. Yerramalli S, Stojanovic M, Mitra U, 2012. Partial FFT demodulation: a detection method for highly Doppler distorted OFDM systems. IEEE Trans Signal Process, 60(11):5906–5918.  https://doi.org/10.1109/TSP.2012.2210547 MathSciNetzbMATHGoogle Scholar
  112. Zhang J, Zheng YR, 2010. Bandwidth-efficient frequency-domain equalization for single carrier multiple-input multiple-output underwater acoustic communications. J Acoust Soc Am, 128(5):2910–9.  https://doi.org/10.1121/1.3480569 Google Scholar
  113. Zhang J, Zheng YR, 2011. Frequency-domain turbo equalization with soft successive interference cancellation for single carrier MIMO underwater acoustic communications. IEEE Trans Wirel Commun, 10(9):2872–2882.  https://doi.org/10.1109/TWC.2011.072511.100324 Google Scholar
  114. Zheng YR, Xiao CS, Yang TC, et al., 2007. Frequency-domain channel estimation and equalization for single carrier underwater acoustic communications. OCEANS, p.1–6.  https://doi.org/10.1109/OCEANS.2007.4449247 Google Scholar
  115. Zheng YR, Xiao CS, Liu X, et al., 2008. Further results on frequency-domain channel equalization for single carrier underwater acoustic communications. OCEANS, p.1–6.  https://doi.org/10.1109/OCEANSKOBE.2008.4531074 Google Scholar
  116. Zheng YR, Xiao CS, Yang TC, et al., 2010. Frequency-domain channel estimation and equalization for shallow-water acoustic communications. Phys Commun, 3(1): 48–63.  https://doi.org/10.1016/j.phycom.2009.08.010 Google Scholar
  117. Zoksimovski A, Rappaport C, Sexton D, et al., 2012. Underwater electromagnetic communications using conduction: channel characterization. Ad Hoc Netw, 34:42–51.  https://doi.org/10.1016/j.adhoc.2015.01.017 Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Marine Science and TechnologyNorthwestern Polytechnical UniversityXi’anChina
  2. 2.School of Information and Communication EngineeringDalian University of TechnologyDalianChina

Personalised recommendations