Advertisement

Structural total least squares algorithm for locating multiple disjoint sources based on AOA/TOA/FOA in the presence of system error

  • Xin Chen
  • Ding Wang
  • Rui-rui Liu
  • Jie-xin Yin
  • Ying Wu
Article

Abstract

Single-station passive localization technology avoids the complex time synchronization and information exchange between multiple observatories, and is increasingly important in electronic warfare. Based on a single moving station localization system, a new method with high localization precision and numerical stability is proposed when the measurements from multiple disjoint sources are subject to the same station position and velocity displacement. According to the available measurements including the angle-of-arrival (AOA), time-of-arrival (TOA), and frequency-of-arrival (FOA), the corresponding pseudo linear equations are deduced. Based on this, a structural total least squares (STLS) optimization model is developed and the inverse iteration algorithm is used to obtain the stationary target location. The localization performance of the STLS localization algorithm is derived, and it is strictly proved that the theoretical performance of the STLS method is consistent with that of the constrained total least squares method under first-order error analysis, both of which can achieve the Cramér-Rao lower bound accuracy. Simulation results show the validity of the theoretical derivation and superiority of the new algorithm.

Key words

Single-station Structural total least squares Inverse iteration Angle-of-arrival (AOA) Time-of-arrival (TOA) Frequency-of-arrival (FOA) Disjoint sources 

CLC number

TN911.7 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abatzoglou TJ, Mendel JM, Harada GA, 1991. The constrained total least squares technique and its applications to harmonic superresolution. IEEE Trans Signal Process, 39(5):1070–1087.  https://doi.org/10.1109/78.80955 CrossRefzbMATHGoogle Scholar
  2. Antreich F, Nossek JA, Seco–Granados G, et al., 2011. The extended invariance principle for signal parameter estimation in an unknown spatial field. IEEE Trans Signal Process, 59(7):3213–3225.  https://doi.org/10.1109/TSP.2011.2140107 MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bamler R, 1991. Doppler frequency estimation and the Cramer–Rao bound. IEEE Trans Geosci Remote Sens, 29(3):385–390.  https://doi.org/10.1109/36.79429 CrossRefGoogle Scholar
  4. Bar–Shalom O, Weiss AJ, 2014. Emitter geolocation using single moving receiver. Signal Process, 105:70–83.  https://doi.org/10.1016/j.sigpro.2014.05.006 CrossRefGoogle Scholar
  5. Belouchrani A, Aouada S, 2003. Maximum likelihood joint angle and delay estimation in unknown noise fields. IEEE Int Conf on Acoustics, Speech, and Signal Processing, p.V–265.  https://doi.org/10.1109/ICASSP.2003.1199919 Google Scholar
  6. Carevic D, 2007. Automatic estimation of multiple target positions and velocities using passive TDOA measurements of transients. IEEE Trans Signal Process, 55(2): 424–436.  https://doi.org/10.1109/TSP.2006.885745 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Chalise BK, Zhang YD, Amin MG, et al., 2014. Target localization in a multi–static passive radar system through convex optimization. Signal Process, 102:207–215.  https://doi.org/10.1016/j.sigpro.2014.02.023 CrossRefGoogle Scholar
  8. de Moor B, 1994. Total least squares for affinely structured matrices and the noisy realization problem. IEEE Trans Signal Process, 42(11):3104–3113.  https://doi.org/10.1109/78.330370 CrossRefGoogle Scholar
  9. Doğançay K, 2005. Bearings–only target localization using total least squares. Signal Process, 85(9):1695–1710.  https://doi.org/10.1016/j.sigpro.2005.03.007 CrossRefzbMATHGoogle Scholar
  10. Eldar YC, 2006. Uniformly improving the CramÉr–Rao bound and maximum–likelihood estimation. IEEE Trans Signal Process, 54(8):2943–2956.  https://doi.org/10.1109/TSP.2006.877648 MathSciNetCrossRefzbMATHGoogle Scholar
  11. Foy WH, 1976. Position–location solutions by Taylor–series estimation. IEEE Trans Aerosp Electron Syst, AES–12(2): 187–194.  https://doi.org/10.1109/TAES.1976.308294 Google Scholar
  12. Giacometti R, Baussard A, Cornu C, et al., 2016. Accuracy studies for TDOA–AOA localization of emitters with a single sensor. IEEE Radar Conf, p.1–4.  https://doi.org/10.1109/RADAR.2016.7485185 Google Scholar
  13. Golub GH, van Loan CF, 2012. Matrix Computations (4th Ed.). The Johns Hopkins University Press, Baltimore, USA.zbMATHGoogle Scholar
  14. Griffin A, Alexandridis A, Pavlidi D, et al., 2015. Localizing multiple audio sources in a wireless acoustic sensor network. Signal Process, 107:54–67.  https://doi.org/10.1016/j.sigpro.2014.08.013 CrossRefGoogle Scholar
  15. Hao BJ, Li Z, Si JB, et al., 2012. Passive multiple disjoint sources localization using TDOAs and GROAs in the presence of sensor location uncertainties. IEEE Int Conf on Communications, p.47–52.  https://doi.org/10.1109/ICC.2012.6364164 Google Scholar
  16. Ho KC, Lu XN, Kovavisaruch L, 2007. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution. IEEE Trans Signal Process, 55(2):684–696.  https://doi.org/10.1109/TSP.2006.885744 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Jia TY, Wang HY, Shen XH, et al., 2017. Bearing–only multiple sources localization and the spatial spectrum. OCEANS, p.1–5.  https://doi.org/10.1109/OCEANSE.2017.8084819 CrossRefGoogle Scholar
  18. Kay SM, 1993. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory. Prentice Hall, Englewood Cliffs, New Jersey, USA, p.465–466.zbMATHGoogle Scholar
  19. Knapp C, Carter G, 1976. The generalized correlation method for estimation of time delay. IEEE Trans Acoust Speech Signal Process, 24(4):320–327.  https://doi.org/10.1109/TASSP.1976.1162830 CrossRefGoogle Scholar
  20. Lemma AN, van der Veen AJ, Deprettere EF, 2003. Analysis of joint angle–frequency estimation using ESPRIT. IEEE Trans Signal Process, 51(5):1264–1283.  https://doi.org/10.1109/TSP.2003.810306 MathSciNetCrossRefzbMATHGoogle Scholar
  21. Lemmerling P, de Moor B, van Huffel S, 1996. On the equivalence of constrained total least squares and structured total least squares. IEEE Trans Signal Process, 44(11): 2908–2911.  https://doi.org/10.1109/78.542454 CrossRefGoogle Scholar
  22. Li J, Zhao YJ, Li DH, 2014. Accurate single–observer passive coherent location estimation based on TDOA and DOA. Chin J Aeronaut, 27(4):913–923.  https://doi.org/10.1016/j.cja.2014.06.004 CrossRefGoogle Scholar
  23. Li JZ, Pang HW, Guo FC, et al., 2015. Localization of multiple disjoint sources with prior knowledge on source locations in the presence of sensor location errors. Dig Signal Process, 40:181–197.  https://doi.org/10.1016/j.dsp.2015.02.003 MathSciNetCrossRefGoogle Scholar
  24. Li MH, Lu YL, 2008. Angle–of–arrival estimation for localization and communication in wireless networks. 16th European Signal Processing Conf, p.1–5.Google Scholar
  25. Liu FL, Wang JK, Du RY, 2010. Unitary–JAFE algorithm for joint angle–frequency estimation based on Frame–Newton method. Signal Process, 90(3):809–820.  https://doi.org/10.1016/j.sigpro.2009.08.013 CrossRefzbMATHGoogle Scholar
  26. Liu RR, Wang YL, Yin JX, et al., 2017. Passive source localization using importance sampling based on TOA and FOA measurements. Front Inform Technol Electron Eng, 18(8):1167–1179.  https://doi.org/10.1631/FITEE.1601657 CrossRefGoogle Scholar
  27. Luise M, Reggiannini R, 1995. Carrier frequency recovery in all–digital modems for burst–mode transmissions. IEEE Trans Commun, 43(2–4):1169–1178.  https://doi.org/10.1109/26.380149 CrossRefGoogle Scholar
  28. Markovsky I, van Huffel S, 2007. Overview of total leastsquares methods. Signal Process, 87(10):2283–2302.  https://doi.org/10.1016/j.sigpro.2007.04.004 CrossRefzbMATHGoogle Scholar
  29. Mir HS, Sahr JD, Hatke GF, et al., 2007. Passive source localization using an airborne sensor array in the presence of manifold perturbations. IEEE Trans Signal Process, 55(6):2486–2496.  https://doi.org/10.1109/TSP.2007.893936 MathSciNetCrossRefzbMATHGoogle Scholar
  30. Raykar VC, Kozintsev IV, Lienhart R, 2005. Position calibration of microphones and loudspeakers in distributed computing platforms. IEEE Trans Speech Audio Process, 13(1):70–83.  https://doi.org/10.1109/TSA.2004.838540 CrossRefGoogle Scholar
  31. Rockah Y, Schultheiss PM, 1987a. Array shape calibration using sources in unknown location—Part I: far–field sources. IEEE Trans Acoust Speech Signal Process, 35(3): 286–299.  https://doi.org/10.1109/TASSP.1987.1165144 CrossRefGoogle Scholar
  32. Rockah Y, Schultheiss PM, 1987b. Array shape calibration using sources in unknown locations—Part II: near–field sources and estimator implementation. IEEE Trans Acoust Speech Signal Process, 35(6):724–735.  https://doi.org/10.1109/TASSP.1987.1165222 CrossRefGoogle Scholar
  33. Shen H, Ding Z, Dasgupta S, et al., 2014. Multiple source localization in wireless sensor networks based on time of arrival measurement. IEEE Trans Signal Process, 62(8): 1938–1949.  https://doi.org/10.1109/TSP.2014.2304433 MathSciNetCrossRefzbMATHGoogle Scholar
  34. So HC, Lin LX, 2011. Linear least squares approach for accurate received signal strength based source localization. IEEE Trans Signal Process, 59(8):4035–4040.  https://doi.org/10.1109/TSP.2011.2152400 MathSciNetCrossRefzbMATHGoogle Scholar
  35. Sun M, Ho KC, 2011. An asymptotically efficient estimator for TDOA and FDOA positioning of multiple disjoint sources in the presence of sensor location uncertainties. IEEE Trans Signal Process, 59(7):3434–3440.  https://doi.org/10.1109/TSP.2011.2131135 MathSciNetCrossRefzbMATHGoogle Scholar
  36. Sun XY, Li JD, Huang PY, et al., 2008. Total least–squares solution of active target localization using TDOA and FDOA measurements in WSN. 22nd Int Conf on Advanced Information Networking and Applications, p.995–999.  https://doi.org/10.1109/WAINA.2008.150 CrossRefGoogle Scholar
  37. Torrieri DJ, 1984. Statistical theory of passive location systems. IEEE Trans Aerosp Electron Syst, AES–20(2): 183–198.  https://doi.org/10.1109/TAES.1984.310439 Google Scholar
  38. Wang D, Zhang L, Wu Y, 2007. Constrained total least squares algorithm for passive location based on bearing–only measurements. Sci China Ser F Inform Sci, 50(4): 576–586.  https://doi.org/10.1007/s11432-007-0023-8 MathSciNetCrossRefzbMATHGoogle Scholar
  39. Wang D, Zhang L, Wu Y, 2009. The structured total least squares algorithm research for passive location based on angle information. Sci China Ser F Inform Sci, 52(6): 1043–1054.  https://doi.org/10.1007/s11432-009-0114-9 MathSciNetCrossRefzbMATHGoogle Scholar
  40. Wang L, Hu AQ, Bai GW, et al., 2011. Enhanced constrained total least squares estimator in TDOA localization for WSNs. Int Conf on Computer Science and Service System, p.389–392.  https://doi.org/10.1109/CSSS.2011.5974564 Google Scholar
  41. Wang YY, Chen JT, Fang WH, 2001. TST–MUSIC for joint DOA–delay estimation. IEEE Trans Signal Process, 49(4):721–729.  https://doi.org/10.1109/78.912916 CrossRefGoogle Scholar
  42. Weiss AJ, Friedlander B, 1989. Array shape calibration using sources in unknown locations—a maximum likelihood approach. IEEE Trans Acoust Speech Signal Process, 37(12):1958–1966.  https://doi.org/10.1109/29.45542 CrossRefGoogle Scholar
  43. Wu H, Chen SX, Zhang YH, et al., 2015. Robust structured total least squares algorithm for passive location. J Syst Eng Electron, 26(5):946–953.  https://doi.org/10.1109/JSEE.2015.00103 CrossRefGoogle Scholar
  44. Yang K, An JP, Bu XY, et al., 2010. Constrained total least–squares location algorithm using time–difference–ofarrival measurements. IEEE Trans Veh Technol, 59(3): 1558–1562.  https://doi.org/10.1109/TVT.2009.2037509 CrossRefGoogle Scholar
  45. Yang L, Ho KC, 2009. An approximately efficient TDOA localization algorithm in closed–form for locating multiple disjoint sources with erroneous sensor positions. IEEE Trans Signal Process, 57(12):4598–4615.  https://doi.org/10.1109/TSP.2009.2027765 MathSciNetCrossRefzbMATHGoogle Scholar
  46. Yin JX, Wu Y, Wang D, 2014. On 2–D direction–of–arrival estimation performance for rank reduction estimator in presence of unexpected modeling errors. Circ Syst Signal Process, 33(2):515–547.  https://doi.org/10.1007/s00034-013-9654-8 CrossRefGoogle Scholar
  47. Yu H, Huang G, Gao J, 2012. Constrained total least–squares localisation algorithm using time difference of arrival and frequency difference of arrival measurements with sensor location uncertainties. IET Radar Sonar Navig, 6(9): 891–899.  https://doi.org/10.1049/iet-rsn.2011.0205 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Digital Switching System Engineering and Technology Research CenterZhengzhouChina
  2. 2.Zhengzhou Institute of Information Science and TechnologyZhengzhouChina

Personalised recommendations