Advertisement

Underwater docking of an under-actuated autonomous underwater vehicle: system design and control implementation

  • Bo Li
  • Yuan-xin Xu
  • Shuang-shuang Fan
  • Wen Xu
Article

Abstract

Underwater docking greatly facilitates and extends operation of an autonomous underwater vehicle (AUV) without the support of a surface vessel. Robust and accurate control is critically important for docking an AUV into a small underwater funnel-type dock station. In this paper, a docking system with an under-actuated AUV is presented, with special attention paid to control algorithm design and implementation. For an under-actuated AUV, the cross-track error can be controlled only via vehicle heading modulation, so both the cross-track error and heading error have to be constrained to achieve successful docking operations, while the control problem can be even more complicated in practical scenarios with the presence of unknown ocean currents. To cope with the above issues, a control scheme of a three-hierarchy structure of control loops is developed, which has been embedded with online current estimator/compensator and effective control parameter tuning. The current estimator can evaluate both horizontal and vertical current velocity components, based only on the measurement of AUV’s velocity relative to the ground; in contrast, most existing methods use the measurements of both AUV’s velocities respectively relative to the ground and the water column. In addition to numerical simulation, the proposed docking scheme is fully implemented in a prototype AUV using MOOS-IvP architecture. Simulation results show that the current estimator/compensator works well even in the presence of lateral current disturbance. Finally, a series of sea trials are conducted to validate the current estimator/compensator and the whole docking system. The sea trial results show that our control methods can drive the AUV into the dock station effectively and robustly.

Key words

Autonomous underwater vehicle (AUV) Docking systems Current estimator Current compensation Docking control 

CLC number

TP242 

Notes

Acknowledgements

This work would not have been possible without the sustained effort of the entire docking team. The authors especially thank the MIT MOOS-IvP team for making this valuable tool publicly available.

References

  1. Allen B, Austin T, Forrester N, et al., 2006. Autonomous docking demonstrations with enhanced REMUS technology. OCEANS, p.1–6.  https://doi.org/10.1109/oceans.2006.306952 Google Scholar
  2. Baumgartner MF, Stafford KM, Winsor P, et al., 2014. Glider-based passive acoustic monitoring in the Arctic. Mar Technol Soc J, 48(5):40–51.  https://doi.org/10.4031/MTSJ.48.5.2 CrossRefGoogle Scholar
  3. Borgogna G, Lamberti T, Massardo AF, 2015. Innovative power system for autonomous underwater vehicle. OCEANS, p.1–8.  https://doi.org/10.1109/oceans-genova.2015.7271339 Google Scholar
  4. Bradley AM, Feezor MD, Singh H, et al., 2001. Power systems for autonomous underwater vehicles. IEEE J Ocean Eng, 26(4):526–538.  https://doi.org/10.1109/48.972089 CrossRefGoogle Scholar
  5. Chen YH, Yang CJ, Li DJ, et al., 2012a. Design and application of a junction box for cabled ocean observatories. Mar Technol Soc J, 46(3):50–63.  https://doi.org/10.4031/MTSJ.46.3.4 CrossRefGoogle Scholar
  6. Chen YH, Yang CJ, Li DJ, et al., 2012b. Development of a direct current power system for a multi-node cabled ocean observatory system. J Zhejiang Univ-Sci C (Comput & Electron), 13(8):613–623.  https://doi.org/10.1631/jzus.C1100381 CrossRefGoogle Scholar
  7. Choyekh M, Kato N, Short T, et al., 2015. Vertical water column survey in the Gulf of Mexico using autonomous underwater vehicle SOTAB-I. Mar Technol Soc J, 49(3): 88–101.  https://doi.org/10.4031/MTSJ.49.3.8 CrossRefGoogle Scholar
  8. Chen YH, Yang CJ, Li DJ, et al., 2012a. Design and application of a junction box for cabled ocean observatories. Mar Technol Soc J, 46(3):50–63.  https://doi.org/10.4031/MTSJ.46.3.4 CrossRefGoogle Scholar
  9. Chen YH, Yang CJ, Li DJ, et al., 2012b. Development of a direct current power system for a multi-node cabled ocean observatory system. J Zhejiang Univ-Sci C (Comput & Electron), 13(8):613–623.  https://doi.org/10.1631/jzus.C1100381 CrossRefGoogle Scholar
  10. Choyekh M, Kato N, Short T, et al., 2015. Vertical water column survey in the Gulf of Mexico using autonomous underwater vehicle SOTAB-I. Mar Technol Soc J, 49(3): 88–101.  https://doi.org/10.4031/MTSJ.49.3.8 CrossRefGoogle Scholar
  11. Chen YH, Yang CJ, Li DJ, et al., 2012a. Design and application of a junction box for cabled ocean observatories. Mar Technol Soc J, 46(3):50–63.  https://doi.org/10.4031/MTSJ.46.3.4 CrossRefGoogle Scholar
  12. Chen YH, Yang CJ, Li DJ, et al., 2012b. Development of a direct current power system for a multi-node cabled ocean observatory system. J Zhejiang Univ-Sci C (Comput & Electron), 13(8):613–623.  https://doi.org/10.1631/jzus.C1100381 CrossRefGoogle Scholar
  13. Choyekh M, Kato N, Short T, et al., 2015. Vertical water column survey in the Gulf of Mexico using autonomous underwater vehicle SOTAB-I. Mar Technol Soc J, 49(3): 88–101.  https://doi.org/10.4031/MTSJ.49.3.8 CrossRefGoogle Scholar
  14. Li ZS, Li DJ, Lin L, et al., 2010. Design considerations for electromagnetic couplers in contactless power transmission systems for deep-sea applications. J Zhejiang Univ-Sci C (Comput & Electron), 11(10):824–834.  https://doi.org/10.1631/jzus.C0910711 CrossRefGoogle Scholar
  15. Ludvigsen M, Johnsen G, Sørensen AJ, et al., 2014. Scientific operations combining ROV and AUV in the Trondheim Fjord. Mar Technol Soc J, 48(2):59–71.  https://doi.org/10.4031/MTSJ.48.2.3 CrossRefGoogle Scholar
  16. McEwen R S, Hobson B W, McBride L, et al., 2008. Docking control system for a 54-cm-diameter (21-in) AUV. IEEE J Ocean Eng, 33(4):550–562.  https://doi.org/10.1109/joe.2008.2005348 CrossRefGoogle Scholar
  17. Newman P M, 2008. MOOS—Mission Orientated Operating Suite. Technical Report, 2299(08), Massachusetts Institute of Technology.Google Scholar
  18. Park JY, Jun BH, Kim K, et al., 2009. Improvement of vision guided underwater docking for small AUV ISiMI. OCEANS, p.1–5.  https://doi.org/10.23919/OCEANS.2009.5422241 Google Scholar
  19. Park JY, Jun BH, Lee PM, et al., 2011a. Docking problem and guidance laws considering drift for an underactuated AUV. OCEANS, p.1–7.  https://doi.org/10.1109/oceans-spain.2011.6003574 Google Scholar
  20. Park JY, Jun BH, Lee PM, et al., 2011b. Modified linear terminal guidance for docking and a time-varying ocean current observer. Proc IEEE Symp on Underwater Technology (UT) and Workshop on Scientific Use of Submarine Cables and Related Technologies, p.1–6.  https://doi.org/10.1109/ut.2011.5774141 Google Scholar
  21. Peng SL, Yang CJ, Fan SS, et al., 2014. Hybrid underwater glider for underwater docking: Modeling and performance evaluation. Mar Technol Soc J, 48(6):112–124.  https://doi.org/10.4031/MTSJ.48.6.5 CrossRefGoogle Scholar
  22. Refsnes JE, Pettersen KY, Sørensen AJ, 2006. Control of slender body underactuated AUVs with current estimation. Proc 45th IEEE Conf on Decision and Control, p.43–50.  https://doi.org/10.1109/cdc.2006.376984 CrossRefGoogle Scholar
  23. Sato Y, Maki T, Kume A, et al., 2014. Path replanning method for an AUV in natural hydrothermal vent fields: Toward 3D imaging of a hydrothermal chimney. Mar Technol Soc J, 48(3):104–114.  https://doi.org/10.4031/MTSJ.48.3.5 CrossRefGoogle Scholar
  24. Shi JG, Li DJ, Yang CJ, 2014. Design and analysis of an underwater inductive coupling power transfer system for autonomous underwater vehicle docking applications. J Zhejiang Univ-Sci C (Comput & Electron), 15(1):51–62.  https://doi.org/10.1631/jzus.C1300171 CrossRefGoogle Scholar
  25. Shi JG, Li DJ, Yang CJ, et al., 2015. Impact analysis during docking process of autonomous underwater vehicle. J Zhejiang Univ (Eng Sci), 49(3):497–504 (in Chinese).  https://doi.org/10.3785/j.issn.1008-973X.2015.03.015 Google Scholar
  26. Singh H, Bellingham JG, Hover F, et al., 2001. Docking for an autonomous ocean sampling network. IEEE J Ocean Eng, 26(4):498–514.  https://doi.org/10.1109/48.972084 CrossRefGoogle Scholar
  27. Teo K, An E, Beaujean PPJ, 2012. A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances. IEEE J Ocean Eng, 37(2): 143–155.  https://doi.org/10.1109/JOE.2011.2180058 CrossRefGoogle Scholar
  28. Teo K, Goh B, Chai O K, 2015. Fuzzy docking guidance using augmented navigation system on an AUV. IEEE J Ocean Eng, 40(2):349–361.  https://doi.org/10.1109/JOE.2014.2312593 CrossRefGoogle Scholar
  29. Xiang XB, Yu CY, Zhang Q, et al., 2016. Path-following control of an AUV: fully actuated versus under-actuated configuration. Mar Technol Soc J, 50(1):34–47.  https://doi.org/10.4031/MTSJ.50.1.4 CrossRefGoogle Scholar
  30. Xie YC, Huang H, Hu Y, et al., 2016. Applications of advanced control methods in spacecrafts: progress, challenges, and future prospects. Front Inform Technol Electron Eng, 17(9):841–861.  https://doi.org/10.1631/FITEE.1601063 CrossRefGoogle Scholar
  31. Zhang M, Xu YX, Li B, et al., 2014. A modular autonomous underwater vehicle for environmental sampling: system design and preliminary experimental results. OCEANS, p.1–5.  https://doi.org/10.1109/oceans-taipei.2014.6964495 Google Scholar
  32. Zhang M, Xu W, Xu YX, 2016. Inversion of the sound speed with radiated noise of an autonomous underwater vehicle in shallow water waveguides. IEEE J Ocean Eng, 41(1): 204–216.  https://doi.org/10.1109/JOE.2015.2418172 CrossRefGoogle Scholar
  33. Zhou JJ, Tang ZD, Zhang HH, et al., 2013. Spatial path following for AUVs using adaptive neural network controllers. Math Prob Eng, 2013:749689.  https://doi.org/10.1155/2013/749689 MathSciNetzbMATHGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Information Science and Electronic EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations