Resource allocation for physical-layer security in OFDMAdownlinkwith imperfect CSI

  • Wei Yang
  • Jing Mao
  • Chen ChenEmail author
  • Xiang Cheng
  • Liu-qing Yang
  • Hai-ge Xiang


We investigate the problem of resource allocation in a downlink orthogonal frequency-division multiple access (OFDMA) broadband network with an eavesdropper under the condition that both legitimate users and the eavesdropper are with imperfect channel state information (CSI). We consider three kinds of imperfect CSI: (1) noise and channel estimation errors, (2) feedback delay and channel prediction, and (3) limited feedback channel capacity, where quantized CSI is studied using rate-distortion theory because it can be used to establish an informationtheoretic lower bound on the capacity of the feedback channel. The problem is formulated as joint power and subcarrier allocation to optimize the maximum-minimum (max-min) fairness criterion over the users’ secrecy rate. The problem considered is a mixed integer nonlinear programming problem. To reduce the complexity, we propose a two-step suboptimal algorithm that separately performs power and subcarrier allocation. For a given subcarrier assignment, optimal power allocation is achieved by developing an algorithm of polynomial computational complexity. Numerical results show that our proposed algorithm can approximate the optimal solution.

Key words

Resource allocation Orthogonal frequency-division multiple access (OFDMA) Imperfect channel state information (CSI) Physical layer security 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barros J, Rodrigues MRD, 2006. Secrecy capacity of wireless channels. IEEE Int Symp on Information Theory, p.356–360. Google Scholar
  2. Boyd S, Vandenberghe L, 2004. Convex Optimization. Cambridge University Press, New York, USA.CrossRefzbMATHGoogle Scholar
  3. Chen C, Bai L, Wu B, et al., 2011. Downlink throughput maximization for OFMDA systems with feedback channel capacity constraints. IEEE Trans Signal Process, 59(1):441–446. MathSciNetCrossRefGoogle Scholar
  4. Chen XM, Chen J, Zhang HZ, et al., 2016. On secrecy performance of multiantenna-jammer-aided secure communications with imperfect CSI. IEEE Trans Veh Technol, 65(10):8014–8024. CrossRefGoogle Scholar
  5. Cheng X, Yang LQ, Shen X, 2015. D2D for intelligent transportation systems: a feasibility study. IEEE Trans Intell Transp Syst, 16(4):1784–1793. CrossRefGoogle Scholar
  6. Cheong SKLY, Hellman ME, 1978. The Gaussian wire-tap channel. IEEE Trans Inform Theory, 24(4):451–456. MathSciNetCrossRefzbMATHGoogle Scholar
  7. Cover TM, Thomas JA, 2012. Elements of Information Theory. John Wiley & Sons.zbMATHGoogle Scholar
  8. Csiszár I, Korner J, 1978. Broadcast channels with confidential messages. IEEE Trans Inform Theory, 24(3):339–348. MathSciNetCrossRefzbMATHGoogle Scholar
  9. Gradshteyn IS, Ryzhik IM, 2014. Table of Integrals, Series, and Products. Academic Press.zbMATHGoogle Scholar
  10. Huang YZ, Al-Qahtani FS, Duong TQ, et al., 2015. Secure transmission in MIMO wiretap channels using generalorder transmit antenna selection with outdated CSI. IEEE Trans Commun, 63(8):2959–2971. CrossRefGoogle Scholar
  11. Huang YZ, Wang JL, Zhong CJ, et al., 2016. Secure transmission in cooperative relaying networks with multiple antennas. IEEE Trans Wirel Commun, 15(10):6843–6856. CrossRefGoogle Scholar
  12. Jang J, Lee KB, 2003. Transmit power adaptation for multiuser OFMDA systems. IEEE J Sel Areas Commun, 21(2):171–178. CrossRefGoogle Scholar
  13. Jorswieck EA, Wolf A, 2008. Resource allocation for the wiretap multi-carrier broadcast channel. Proc Int Conf on Telecommunications, p.1–6. Google Scholar
  14. Karachontzitis S, Timotheou S, Krikidis I, et al., 2015. Security-aware max–min resource allocation in multiuser OFMDA downlink. IEEE Trans Inform Forens Secur, 10(3):529–542. CrossRefGoogle Scholar
  15. Li Z, Yates R, Trappe W, 2006. Secrecy capacity of independent parallel channels. In: Liu RH, Trappe W (Eds.), Securing Wireless Communications at the Physical Layer. Springer, New York, p.1–18.
  16. Shen ZK, Andrews JG, Evans BL, 2005. Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints. IEEE Trans Wirel Commun, 4(6):2726–2737. CrossRefGoogle Scholar
  17. Song GC, Li Y, 2005. Cross-layer optimization for OFDM wireless networks—part II: algorithm development. IEEE Trans Wirel Commun, 4(2):625–634. CrossRefGoogle Scholar
  18. Wang C, Wang HM, 2015. Robust joint beamforming and jamming for secure AF networks: low-complexity design. IEEE Trans Veh Technol, 64(5):2192–2198. CrossRefGoogle Scholar
  19. Wang HM, Wang C, Ng DWK, 2015. Artificial noise assisted secure transmission under training and feedback. IEEE Trans Signal Process, 63(23):6285–6298. MathSciNetCrossRefGoogle Scholar
  20. Wang XW, Tao MX, Mo JH, et al., 2011. Power and subcarrier allocation for physical-layer security in OFMDAbased broadband wireless networks. IEEE Trans Inform Forens Secur, 6(3):693–702. CrossRefGoogle Scholar
  21. Wong CY, Cheng RS, Letaief KB, et al., 1999. Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE J Sel Areas Commun, 17(10):1747–1758. CrossRefGoogle Scholar
  22. Wong IC, Evans BL, 2009. Optimal resource allocation in the OFMDA downlink with imperfect channel knowledge. IEEE Trans Commun, 57(1):232–241. CrossRefGoogle Scholar
  23. Wu B, Chen C, Bai L, et al., 2010. Resource allocation for OFMDA systems with guaranteed outage probabilities. Proc 6th Int Wireless Communications and Mobile Computing Conf, p.731–735. Google Scholar
  24. Wu B, Bai L, Chen C, et al., 2011. Resource allocation for maximizing outage throughput in OFMDA systems with finite-rate feedback. EURASIP J Wirel Commun Netw, 2011:1–10. CrossRefGoogle Scholar
  25. Wyner A, 1975. The wire-tap channel. Bell Syst Techn J, 54(8):1355–1387. MathSciNetCrossRefzbMATHGoogle Scholar
  26. Yang N, Yeoh PL, Elkashlan M, et al., 2013. Transmit antenna selection for security enhancement in MIMO wiretap channels. IEEE Trans Commun, 61(1):144–154. CrossRefGoogle Scholar
  27. Zhang M, Liu Y, 2016. Energy harvesting for physical-layer security in OFDMA networks. IEEE Trans Inform Forens Secur, 11(1):154–162. CrossRefGoogle Scholar
  28. Zhang M, Liu Y, Zhang R, 2016. Artificial noise aided secrecy information and power transfer in OFDMA systems. IEEE Trans Wirel Commun, 15(4):3085–3096. CrossRefGoogle Scholar
  29. Zhang RQ, Cheng X, Yang LQ, et al., 2015. Interference graph based resource allocation (InGRA) for D2D communications underlaying cellular networks. IEEE Trans Veh Technol, 64(8):3844–3850. CrossRefGoogle Scholar
  30. Zhang RQ, Cheng X, Yang LQ, 2016. Cooperation via spectrum sharing for physical layer security in device-todevice communications underlaying cellular networks. IEEE Trans Wirel Commun, 15(8):5651–5663. CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Optical Communication Systems and NetworksPeking UniversityBeijingChina
  2. 2.Department of Electrical & Computer EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations