Advertisement

Quantitative feedback controller design and test for an electro-hydraulic position control system in a large-scale reflecting telescope

  • Xiong-bin Peng
  • Guo-fang Gong
  • Hua-yong Yang
  • Hai-yang Lou
  • Wei-qiang Wu
  • Tong Liu
Article

Abstract

For the primary mirror of a large-scale telescope, an electro-hydraulic position control system (EHPCS) is used in the primary mirror support system. The EHPCS helps the telescope improve imaging quality and requires a micron-level position control capability with a high convergence rate, high tracking accuracy, and stability over a wide mirror cell rotation region. In addition, the EHPCS parameters vary across different working conditions, thus rendering the system nonlinear. In this paper, we propose a robust closed-loop design for the position control system in a primary hydraulic support system. The control system is synthesized based on quantitative feedback theory. The parameter bounds are defined by system modeling and identified using the frequency response method. The proposed controller design achieves robust stability and a reference tracking performance by loop shaping in the frequency domain. Experiment results are included from the test rig for the primary mirror support system, showing the effectiveness of the proposed control design.

Keywords

Large-scale reflecting telescope Quantitative feedback theory Electro-hydraulic position control system Micron-level position control capability System identification Robust stability 

CLC number

TH137 TP13 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, K.K., Truong, D.Q., Soo, Y.H., 2007. Self tuning fuzzy PID control for hydraulic load simulator. 6th Int. Conf. on Control, Automation, and Systems, p.345–349. https://doi.org/10.1109/ICCAS.2007.4406935Google Scholar
  2. Bender, F.A., Sonntag, M., Sawodny, O., 2015. Nonlinear model predictive control of a hydraulic excavator using Hammerstein models. 6th Int. Conf. on Automation, Robotics and Applications, p.557–562. https://doi.org/10.1109/ICARA.2015.7081208Google Scholar
  3. Bigongiari, C., Bastieri, D., Galante, N., et al., 2004. The MAGIC telescope reflecting surface. Nucl. Instr. Meth. Phys. Res. A, 518(1–2): 193–194. https://doi.org/10.1016/j.nima.2003.10.058CrossRefGoogle Scholar
  4. Chait, Y., Yaniv, O., 1993. Multi-input/single-output computer-aided control design using the quantitative feedback theory. Int. J. Robust Nonl. Contr., 3(1): 47–54. https://doi.org/10.1002/rnc.4590030103CrossRefGoogle Scholar
  5. Chatlatanagulchai, W., Kijdech, D., Benjalersyarnon, T., et al., 2016. Quantitative feedback input shaping for flexible-joint robot manipulator. J. Dynam. Syst. Meas. Contr., 138(6): 061006. https://doi.org/10.1115/1.4032931CrossRefGoogle Scholar
  6. Elbayomy, K.M., Jiao, Z.X., Zhang, H.Q., 2008. PID control-ler optimization by GA and its performances on the electro-hydraulic servo control system. Chin. J. Aeronaut., 21(4): 378–384. https://doi.org/10.1016/S1000-9361(08)60049-7CrossRefGoogle Scholar
  7. Jin, H., Lim, J., Kim, Y., et al., 2013. Optical design of a re-flecting telescope for CubeSat. J. Opt. Soc. Korea, 17(6): 533–537. https://doi.org/10.3807/JOSK.2013.17.6.533CrossRefGoogle Scholar
  8. Khodabakhshian, A., Hemmati, R., 2012. Robust decentralized multi-machine power system stabilizer design using quantitative feedback theory. Int. J. Electr. Power Energy Syst., 41(1): 112–119. https://doi.org/10.1016/j.ijepes.2012.03.023CrossRefGoogle Scholar
  9. Knohl, E.D., 1994. VLT primary support system. SPIE, 2199: 271–283. https://doi.org/10.1117/12.176196Google Scholar
  10. Liu, G.P., Daley, S., 1999. Optimal-tuning PID controller design in the frequency domain with application to a ro-tary hydraulic system. Contr. Eng. Pract., 7(7): 821–830. https://doi.org/10.1016/S0967-0661(99)00047-7CrossRefGoogle Scholar
  11. Moeinkhah, H., Akbarzadeh, A., Rezaeepazhand, J., 2014. Design of a robust quantitative feedback theory position controller for an ionic polymer metal composite actuator using an analytical dynamic model. J. Intell. Mater. Syst. Struct., 25(15): 1965–1977. https://doi.org/10.1177/1045389X13512906CrossRefGoogle Scholar
  12. Park, I., Hong, S., Sunwoo, M., 2014. Robust air-to-fuel ratio and boost pressure controller design for the EGR and VGT systems using quantitative feedback theory. IEEE Trans. Contr. Syst. Technol., 22(6): 2218–2231. https://doi.org/10.1109/TCST.2014.2301160CrossRefGoogle Scholar
  13. Safarzadeh, O., Khaki-Sedigh, A., Shirani, A.S., 2011. Identi-fication and robust water level control of horizontal steam generators using quantitative feedback theory. Energy Conv. Manag., 52(10): 3103–3111. https://doi.org/10.1016/j.enconman.2011.04.023CrossRefGoogle Scholar
  14. Singh, V.P., Mohanty, S.R., Kishor, N., et al., 2013. Robust H-infinity load frequency control in hybrid distributed generation system. Int. J. Electr. Power Energy Syst., 46: 294–305. https://doi.org/10.1016/j.ijepes.2012.10.015CrossRefGoogle Scholar
  15. Sirouspour, M.R., Salcudean, S.E., 2001. Nonlinear control of hydraulic robots. IEEE Trans. Robot. Autom., 17(2): 173–182. https://doi.org/10.1109/70.928562CrossRefGoogle Scholar
  16. Stepp, L.M., Huang, E., Cho, M.K., 1994. Gemini primary mirror support system. SPIE, 2199: 223–238. https://doi.org/10.1117/12.176192Google Scholar
  17. Wang, Y.Y., Haskara, I., Yaniv, O., 2011. Quantitative feed-back design of air and boost pressure control system for turbocharged diesel engines. Contr. Eng. Pract., 19(6): 626–637. https://doi.org/10.1016/j.conengprac.2011.02.006CrossRefGoogle Scholar
  18. Yao, J.Y., Jiao, Z.X., Ma, D.W., 2014. Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping. IEEE Trans. Ind. Electron., 61(11): 6285–6293. https://doi.org/10.1109/TIE.2014.2304912CrossRefGoogle Scholar
  19. Yao, J.Y., Jiao, Z.X., Ma, D.W., 2015. A practical nonlinear adaptive control of hydraulic servomechanisms with periodic-like disturbances. IEEE/ASME Trans. Mecha-tron., 20(6): 2752–2760. https://doi.org/10.1109/TMECH.2015.2409893CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Fluid Power Transmission and ControlZhejiang UniversityHangzhouChina
  2. 2.College of EngineeringShantou UniversityShantouChina

Personalised recommendations