Advertisement

Information schema constructs for defining warehouse databases of genotypes and phenotypes of system manifestation features

  • Shahab Pourtalebi
  • Imre Horváth
Article

Abstract

Our long-term objective is to develop a software toolbox for pre-embodiment design of complex and heterogeneous systems, such as cyber-physical systems. The novelty of this toolbox is that it uses system manifestation features (SMFs) for transdisciplinary modeling of these systems. The main challenges of implementation of the toolbox are functional design- and language-independent computational realization of the warehouses, and systematic development and management of the various evolving implements of SMFs (genotypes, phenotypes, and instances). Therefore, an information schema construct (ISC) based approach is proposed to create the schemata of the associated warehouse databases and the above-mentioned SMF implements. ISCs logically arrange the data contents of SMFs in a set of relational tables of varying semantics. In this article we present the ISCs necessary for creation of genotypes and phenotypes. They increase the efficiency of the database development process and make the data relationships transparent. Our follow-up research focuses on the elaboration of the SMF instances based system modeling methodology.

Keywords

Cyber-physical systems Software toolbox Pre-embodiment design System manifestation features (SMFs) Warehouses Database schemata SMF genotypes SMF phenotypes SMF instances Information schema constructs 

CLC number

TP391 TP311 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdul-Ghafour, S., Ghodous, P., Shariat, B., et al., 2014. Semantic interoperability of knowledge in feature-based CAD models. Comput.-Aided Des., 56: 45–57. http://dx.doi.org/10.1016/j.cad.2014.06.001CrossRefGoogle Scholar
  2. Apel, S., Kästner, C., 2009. An overview of feature-oriented software development. J. Object Technol., 8(5): 49–84. http://dx.doi.org/10.5381/jot.2009.8.5.c5CrossRefGoogle Scholar
  3. Au, C.K., Yuen, M.M.F., 2000. A semantic feature language for sculptured object modelling. Comput.-Aided Des., 32(1): 63–74. http://dx.doi.org/10.1016/S0010-4485(99)00085-8CrossRefGoogle Scholar
  4. Batory, D., 2005. Feature models, grammars, and propositional formulas. LNCS, 3714: 7–20. http://dx.doi.org/10.1007/11554844_3Google Scholar
  5. Bidarra, R., Bronsvoort, W.F., 2000. Semantic feature modelling. Comput.-Aided Des., 32(3): 201–225. http://dx.doi.org/10.1016/S0010-4485(99)00090-1CrossRefGoogle Scholar
  6. Case, K., Gao, J., 1993. Feature technology: an overview. Int. J. Comput. Integr. Manuf., 6(1-2):2–12. http://dx.doi.org/10.1080/09511929308944549CrossRefGoogle Scholar
  7. Chaudron, M.R., Eskenazi, E.M., Fioukov, A.V., et al., 2001. A framework for formal component-based software architecting. Proc. Specification and Verification of Component-Based Systems Workshop, p.73–80.Google Scholar
  8. Czarnecki, K., Eisenecker, U.W., 2000. Generative Programming: Methods, Tools, and Applications. Addison-Wesley, Boston, MA.Google Scholar
  9. Czarnecki, K., Helsen, S., Eisenecker, U., 2005. Formalizing cardinality-based feature models and their specialization. Softw. Process Improv. Pract., 10(1): 7–29. http://dx.doi.org/10.1002/spip.213CrossRefGoogle Scholar
  10. Grzybek, H., Xu, S., Gulliver, S., et al., 2014. Considering the feasibility of semantic model design in the builtenvironment. Buildings, 4(4): 849–879. http://dx.doi.org/10.3390/buildings4040849CrossRefGoogle Scholar
  11. Henderson, M.R., Anderson, D.C., 1984. Computer recognition and extraction of form features: a CAD/CAM link. Comput. Ind., 5(4): 329–339. http://dx.doi.org/10.1016/0166-3615(84)90056-3CrossRefGoogle Scholar
  12. Horváth, I., Pourtalebi, S., 2015. Fundamentals of a Mereo-Operandi theory to support transdisciplinary modeling and co-design of cyber-physical systems. Proc. ASME Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., p.1–12. http://dx.doi.org/10.1115/DETC2015-46702Google Scholar
  13. Hu, F., 2013. Cyber-Physical Systems: Integrated Computing and Engineering Design. CRC Press, Boca Raton, p.15–35. http://dx.doi.org/10.1201/b15552CrossRefGoogle Scholar
  14. Kacprzynski, G.J., Roemer, M.J., Byington, C.S., et al., 2002. Enhancing gear physics of failure models with system level vibration features. Proc. 56th Meeting of the Society for MFPT, p.263–277.Google Scholar
  15. Lee, G., Eastman, C.M., Sacks, R., et al., 2006. Grammatical rules for specifying information for automated product data modeling. Adv. Eng. Inform., 20(2): 155–170. http://dx.doi.org/10.1016/j.aei.2005.08.003CrossRefGoogle Scholar
  16. Muth, T., Herzberg, D., Larsen, J., 2001. A fresh view on model-based systems engineering: the processing system paradigm. INCOSE Int. Symp., 11(1): 295–302. http://dx.doi.org/10.1002/j.2334-5837.2001.tb02306.xCrossRefGoogle Scholar
  17. Oliver, D.W., 1993. Descriptions of systems engineering methodologies and comparison of information representations. INCOSE Int. Symp., 3(1): 97–104.Google Scholar
  18. Pandit, S., Honavar, V., 2010. Ontology-guided extraction of complex nested relationships. Proc. IEEE 22nd Int. Conf. on Tools with Artificial Intelligence, p.173–178. http://dx.doi.org/10.1109/ictai.2010.98Google Scholar
  19. Parry-Barwick, S., Bowyer, A., 1993. Feature Technology. Technical Report, University of Bath, School of Mechanical Engineering, Bath.zbMATHGoogle Scholar
  20. Pourtalebi, S., Horváth, I., 2016a. Towards a methodology of system manifestation features-based pre-embodiment design. J. Eng. Des., 27(4-6):232–268. http://dx.doi.org/10.1080/09544828.2016.1141183CrossRefGoogle Scholar
  21. Pourtalebi, S., Horváth, I., 2016b. Procedures for creating system manifestation features: an information processing perspective. Proc. 11th Int. Symp. on Tools and Methods of Competitive Engineering, p.129–142.Google Scholar
  22. Pourtalebi, S., Horváth, I., 2016c. Information schema constructs for instantiation and composition of system manifestation features. Front. Inform. Technol. Electron. Eng., in press. http://dx.doi.org/10.1631/FITEE.1601235Google Scholar
  23. Pourtalebi, S., Horváth, I., Opiyo, E., 2013. Multi-aspect study of mass customization in the context of cyber-physical consumer durables. Proc. ASME Int. Design Engineering Technical Conf. & Computers and Information in Engineering Conf., p.V004T05A006. http://dx.doi.org/10.1115/detc2013-12311Google Scholar
  24. Pourtalebi, S., Horváth, I., Opiyo, E.Z., 2014a). New features imply new principles? Deriving design principles for mass customization of cyber-physical consumer durables. Proc. 10th Int. Tools and Methods of Competitive Engineering Symp., p.95–108.Google Scholar
  25. Pourtalebi, S., Horváth, I., Opiyo, E.Z., 2014b). First steps towards a Mereo-Operandi theory for a system featurebased architecting of cyber-physical systems. 4th Int. Workshop on Advanced Design Concepts and Practice, p.2001–2006.Google Scholar
  26. Pratt, M.J., 1991. Aspects of form feature modelling. In: Hagen, H., Roller, D. (Eds.), Geometric Modeling. Springer, Berlin Heidelberg, p.227–250. http://dx.doi.org/10.1007/978-3-642-76404-2_10CrossRefGoogle Scholar
  27. Pulvermueller, E., Speck, A., Coplien, J.O., et al., 2002. Feature interaction in composed systems. LNCS, 2323: 86–97. http://dx.doi.org/10.1007/3-540-47853-1_7zbMATHGoogle Scholar
  28. Romero, T.A., López, G.D., Torres, F.R., 2015. Dynamic SQL codebuilder. Int. J. Latest Res. Sci. Technol., 4(6): 1–6.Google Scholar
  29. Salomons, O.W., van Houten, F.J., Kals, H.J., 1993. Review of research in feature-based design. J. Manuf. Syst., 12(2): 113–132. http://dx.doi.org/10.1016/0278-6125(93)90012-ICrossRefGoogle Scholar
  30. Schirner, G., Gerstlauer, A., Dömer, R., 2010. System-level development of embedded software. Proc. Asia and South Pacific Design Automation Conf., p.903–909. http://dx.doi.org/10.1109/aspdac.2010.5419674Google Scholar
  31. Shah, J.J., Rogers, M.T., 1988. Functional requirements and conceptual design of the feature-based modelling system. Comput.-Aided Eng. J., 5(1): 9–15. http://dx.doi.org/10.1049/cae.1988.0004CrossRefGoogle Scholar
  32. Shenton, A.K., Hayter, S., 2006. Terminology deconstructed: phenomenographic approaches to investigating the term “information”. Libr. Inform. Sci. Res., 28(4): 563–578. http://dx.doi.org/10.1016/j.lisr.2006.10.003CrossRefGoogle Scholar
  33. Sun, H., Zhang, P., 2008. Adaptive system use: an investigation at the system feature level. Proc. 29th Int. Conf. on Information Systems, p.170.Google Scholar
  34. Tao, R., Yang, L., Peng, L., et al., 2009. A case study: using architectural features to improve sophisticated denial-ofservice attack detections. Proc. IEEE Symp. on Computational Intelligence in Cyber Security, p.13–18. http://dx.doi.org/10.1109/CICYBS.2009.4925084Google Scholar
  35. VDI, 2003. Information Technology in Product Development: Feature Technology. VDI 2218. VDI-Richtlinien, Beuth Verlag GmbH, Berlin.Google Scholar
  36. Wang, H., Zhang, Y., Cao, J., et al., 2003. Feature-based collaborative design. J. Mater. Process. Technol., 139(1-3): 613–618. http://dx.doi.org/10.1016/s0924-0136(03)00502-8CrossRefGoogle Scholar
  37. Wang, Y.N., Lin, Z.Y., Liang, X., et al., 2016. On modeling of electrical cyber-physical systems considering cyber security. Front. Inform. Technol. Electron. Eng., 17(5): 465–478. http://dx.doi.org/10.1631/FITEE.1500446CrossRefGoogle Scholar
  38. Wu, Y., He, F., Zhang, D., et al., 2015. Service-oriented feature-based data exchange for cloud-based design and manufacturing. IEEE Trans. Serv. Comput., in press. http://dx.doi.org/10.1109/TSC.2015.2501981Google Scholar
  39. Zha, X.F., Sriram, R.D., 2006. Feature technology and ontology for embedded system design and development. Proc. ASME Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., p.701–714. http://dx.doi.org/10.1115/detc2006-99543Google Scholar
  40. Zha, X.F., Fenves, S.J., Sriram, R.D., 2005. A feature-based approach to embedded system hardware and software co-design. Proc. ASME Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., p.609–620. http://dx.doi.org/10.1115/detc2005-85582Google Scholar
  41. Zhang, D.J., He, F.Z., Han, S.H., et al., 2016. Quantitative optimization of interoperability during feature-based data exchange. Integr. Comput.-Aided Eng., 23(1): 31–50. http://dx.doi.org/10.3233/ica-150499CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Faculty of Industrial Design EngineeringDelft University of TechnologyZuid Hollandthe Netherlands

Personalised recommendations