Advertisement

Carbon emission impact on the operation of virtual power plant with combined heat and power system

  • Yu-hang Xia
  • Jun-yong Liu
  • Zheng-wen Huang
  • Xu Zhang
Article

Abstract

A virtual power plant (VPP) can realize the aggregation of distributed generation in a certain region, and represent distributed generation to participate in the power market of the main grid. With the expansion of VPPs and ever-growing heat demand of consumers, managing the effect of fluctuations in the amount of available renewable resources on the operation of VPPs and maintaining an economical supply of electric power and heat energy to users have been important issues. This paper proposes the allocation of an electric boiler to realize wind power directly converted for supplying heat, which can not only overcome the limitation of heat output from a combined heat and power (CHP) unit, but also reduce carbon emissions from a VPP. After the electric boiler is considered in the VPP operation model of the combined heat and power system, a multi-objective model is built, which includes the costs of carbon emissions, total operation of the VPP and the electricity traded between the VPP and the main grid. The model is solved by the CPLEX package using the fuzzy membership function in Matlab, and a case study is presented. The power output of each unit in the case study is analyzed under four scenarios. The results show that after carbon emission is taken into account, the output of low carbon units is significantly increased, and the allocation of an electric boiler can facilitate the maximum absorption of renewable energy, which also reduces carbon emissions from the VPP.

Keywords

Virtual power plant (VPP) Carbon emissions Electric boiler Wind power Combined heat and power (CHP) 

CLC number

TM732 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, T., Andersson, G., Söder, L., 2001. Distributed generation: a definition. Electr. Power Syst. Res., 57(3):195–204. http://dx.doi.org/10.1016/S0378-7796(01)00101-8CrossRefGoogle Scholar
  2. Arslan, O., Karasan, O.E., 2013. Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks. Energy, 60:116–124. http://dx.doi.org/10.1016/j.energy.2013.08.039CrossRefGoogle Scholar
  3. Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Springer-Verlag, New York, USA, p.155–192. http://dx.doi.org/10.1007/978-1-4757-0450-1MATHGoogle Scholar
  4. Driesen, J., Katiraei, F., 2008. Design for distributed energy resources. IEEE Power Energy Mag., 6(3):30–40. http://dx.doi.org/10.1109/MPE.2008.918703CrossRefGoogle Scholar
  5. Guan, D., Hubacek, K., Weber, C.L., et al., 2008. The drivers of Chinese CO2 emissions from 1980 to 2030. Glob. Environ. Change, 18(4):626–634. http://dx.doi.org/10.1016/j.gloenvcha.2008.08.001CrossRefGoogle Scholar
  6. Hernandez, L., Baladron, C., Aguiar, J.M., et al., 2013. A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Commun. Mag., 51(1):106–113. http://dx.doi.org/10.1109/MCOM.2013.6400446CrossRefGoogle Scholar
  7. Kieny, C., Berseneff, B., Hadjsaid, N., et al., 2009. On the concept and the interest of virtual power plant: some results from the European project Fenix. Proc. IEEE Power & Energy Society General Meeting, p.1–6. http://dx.doi.org/10.1109/PES.2009.5275526Google Scholar
  8. Li, Z.M., Zhang, F., Liang, J., et al., 2015. Optimization on microgrid with combined heat and power system. Proc. CSEE, 35(14):3569–3576 (in Chinese). http://dx.doi.org/10.13334/j.0258-8013.pcsee.2015.14.011Google Scholar
  9. Lombardi, P., Stötzer, M., Styczynski, Z., et al., 2011. Multicriteria optimization of an energy storage system within a Virtual Power Plant architecture. Proc. IEEE Power and Energy Society General Meeting, p.1–6. http://dx.doi.org/10.1109/PES.2011.6039347Google Scholar
  10. Lund, H., Münster, E., 2003. Modelling of energy systems with a high percentage of CHP and wind power. Renew. Energy, 28(14):2179–2193. http://dx.doi.org/10.1016/S0960-1481(03)00125-3CrossRefGoogle Scholar
  11. Mashhour, E., Moghaddas-Tafreshi, S.M., 2011. Bidding strategy of virtual power plant for participating in energy and spinning reserve markets—Part II: numerical analysis. IEEE Trans. Power Syst., 26(2):957–964. http://dx.doi.org/10.1109/TPWRS.2010.2070883CrossRefGoogle Scholar
  12. Mohd, A., Ortjohann, E., Schmelter, A., et al., 2008. Challenges in integrating distributed energy storage systems into future smart grid. Proc. IEEE Int. Symp. on Industrial Electronics, p.1627–1632. http://dx.doi.org/10.1109/ISIE.2008.4676896Google Scholar
  13. Pandžic, H., Kuzle, I., Capuder, T., 2013. Virtual power plant mid-term dispatch optimization. Appl. Energy, 101:134–141. http://dx.doi.org/10.1016/j.apenergy.2012.05.039CrossRefGoogle Scholar
  14. Perroni, C., Rutherford, T.F., 1993. International trade in carbon emission rights and basic materials: general equilibrium calculations for 2020. Scand. J. Econ., 95(3): 257–278. http://dx.doi.org/10.2307/3440355CrossRefGoogle Scholar
  15. Pudjianto, D., Ramsay, C., Strbac, G., 2007. Virtual power plant and system integration of distributed energy resources. IET Renew. Power Gener., 1(1):10–16. http://dx.doi.org/10.1049/iet-rpg:20060023CrossRefGoogle Scholar
  16. Raab, A.F., Ferdowsi, M., Karfopoulos, E., et al., 2011. Virtual power plant control concepts with electric vehicles. Proc. 16th Int. Conf. on Intelligent System Application to Power Systems, p.1–6. http://dx.doi.org/10.1109/ISAP.2011.6082214Google Scholar
  17. Ruiz, N., Cobelo, I., Oyarzabal, J., 2009. A direct load control model for virtual power plant management. IEEE Trans. Power Syst., 24(2):959–966. http://dx.doi.org/10.1109/TPWRS.2009.2016607CrossRefGoogle Scholar
  18. Saboori, H., Mohammadi, M., Taghe, R., 2011. Virtual power plant (VPP), definition, concept, components and types. Proc. Asia-Pacific Power and Energy Engineering Conf., p.1–4. http://dx.doi.org/10.1109/APPEEC.2011.5749026Google Scholar
  19. Skarvelis-Kazakos, S., Rikos, E., Kolentini, E., et al., 2013. Implementing agent-based emissions trading for controlling Virtual Power Plant emissions. Electr. Power Syst. Res., 102:1–7. http://dx.doi.org/10.1016/j.epsr.2013.04.004CrossRefGoogle Scholar
  20. Teleke, S., Baran, M.E., Huang, A.Q., et al., 2009. Control strategies for battery energy storage for wind farm dispatching. IEEE Trans. Energy Conv., 24(3):725–732. http://dx.doi.org/10.1109/TEC.2009.2016000CrossRefGoogle Scholar
  21. Ummels, B.C., Gibescu, M., Pelgrum, E., et al., 2007. Impacts of wind power on thermal generation unit commitment and dispatch. IEEE Trans. Energy Conv., 22(1):44–51. http://dx.doi.org/10.1109/TEC.2006.889616CrossRefGoogle Scholar
  22. Wille-Haussmann, B., Erge, T., Wittwer, C., 2010. Decentralised optimisation of cogeneration in virtual power plants. Solar Energy, 84(4):604–611. http://dx.doi.org/10.1016/j.solener.2009.10.009CrossRefGoogle Scholar
  23. Xia, Y.H., Liu, J.Y., 2016a. Review of virtual power plant based on distributed generation. Electr. Power Autom. Equip., 36(4):100–106, 115 (in Chinese). http://dx.doi.org/10.16081/j.issn.1006-6047.2016.04.016Google Scholar
  24. Xia, Y.H., Liu, J.Y., 2016b. Optimal scheduling of virtual power plant with risk management. J. Power Technol., 96(1):49–56.MathSciNetGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yu-hang Xia
    • 1
  • Jun-yong Liu
    • 1
  • Zheng-wen Huang
    • 2
  • Xu Zhang
    • 3
  1. 1.School of Electrical Engineering and InformationSichuan UniversityChengduChina
  2. 2.Brunel Institute of Power SystemsBrunel UniversityLondonUK
  3. 3.Guangzhou Power Supply BureauGuangzhouChina

Personalised recommendations