Advertisement

RETRACTED ARTICLE: Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO

  • 75 Accesses

  • 5 Citations

Abstract

Suppression of the dynamic oscillations of tie-line power exchanges and frequency in the affected interconnected power systems due to loading-condition changes has been assigned as a prominent duty of automatic generation control (AGC). To alleviate the system oscillation resulting from such load changes, implementation of flexible AC transmission systems (FACTSs) can be considered as one of the practical and effective solutions. In this paper, a thyristor-controlled series compensator (TCSC), which is one series type of the FACTS family, is used to augment the overall dynamic performance of a multi-area multi-source interconnected power system. To this end, we have used a hierarchical adaptive neuro-fuzzy inference system controller-TCSC (HANFISC-TCSC) to abate the two important issues in multi-area interconnected power systems, i.e., low-frequency oscillations and tie-line power exchange deviations. For this purpose, a multi-objective optimization technique is inevitable. Multi-objective particle swarm optimization (MOPSO) has been chosen for this optimization problem, owing to its high performance in untangling non-linear objectives. The efficiency of the suggested HANFISC-TCSC has been precisely evaluated and compared with that of the conventional MOPSO-TCSC in two different multi-area interconnected power systems, i.e., two-area hydro-thermal-diesel and three-area hydro-thermal power systems. The simulation results obtained from both power systems have transparently certified the high performance of HANFISC-TCSC compared to the conventional MOPSO-TCSC.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Change history

  • 21 May 2019

    The Editors-in-Chief have retracted this article of Falehi and Mosallanejad (2017) because of significant overlap with a previous publication by the same authors (Falehi and Mosallanejad 2016). Ali Darvish Falehi disagrees with this retraction. Ali Mosanellanejad did not respond to any correspondence about this retraction.

References

  1. Abd-Elazim, S.M., Ali, E.S., 2016. Load frequency controller design via BAT algorithm for nonlinear interconnected power system. Int. J. Electr. Power Energy Syst., 77: 166–177. http://dx.doi.org/10.1016/j.ijepes.2015.11.029

  2. Abd-Elaziz, A.Y., Ali, E.S., 2015. Cuckoo search algorithm based load frequency controller design for nonlinear interconnected power system. Int. J. Electr. Power Energy Syst., 73: 632–643. http://dx.doi.org/10.1016/j.ijepes.2015.05.050

  3. Ali, E.S., Abd-Elazim, S.M., 2011. Bacteria foraging optimization algorithm based load frequency controller for interconnected power system. Int. J. Electr. Power Energy Syst., 33(3): 633–638. http://dx.doi.org/10.1016/j.ijepes.2010.12.022

  4. Ali, E.S., Abd-Elazim, S.M., 2013. BFOA based design of PID controller for two area load frequency control with nonlinearities. Int. J. Electr. Power Energy Syst., 51: 224–231. http://dx.doi.org/10.1016/j.ijepes.2013.02.030

  5. Benabid, R., Boudour, M., Abido, M.A., 2009. Optimal location and setting of SVC and TCSC devices using non-dominated sorting particle swarm optimization. Electr. Power Syst. Res., 79(12): 1668–1677. http://dx.doi.org/10.1016/j.epsr.2009.07.004

  6. Benítez, A.D., Casillas, J., 2013. Multi-objective genetic learning of serial hierarchical fuzzy systems for large-scale problems. Soft Comput., 17(1): 165–194. http://dx.doi.org/10.1007/s00500-012-0909-2

  7. Bevrani, H., Hiyama, T., Mitani, Y., 2008. Power system dynamic stability and voltage regulation enhancement using an optimal gain vector. Contr. Eng. Pract., 16(9): 1109–1119. http://dx.doi.org/10.1016/j.conengprac.2008.01.001

  8. Cai, L., Erlich, I., 2005. Simultaneous coordinated tuning of PSS and FACTS damping controllers in large power systems. IEEE Trans. Power Syst., 20(1): 294–300. http://dx.doi.org/10.1109/TPWRS.2004.841177

  9. Chaudhuri, B., Pal, B., 2004. Robust damping of multiple swings modes employing global stabilizing signals with TCSC. IEEE Trans. Power Syst., 19(1): 499–506. http://dx.doi.org/10.1109/TPWRS.2003.821463

  10. Chaudhuri, B., Pal, B., Zolotas, A.C., 2003. Mixed-sensitivity approach to H∞ control of power system oscillations employing multiple FACTS devices. IEEE Trans. Power Syst., 18(3): 1149–1156. http://dx.doi.org/10.1109/TPWRS.2003.811311

  11. Dash, P.K., Morris, S., Mishra, S., 2004. Design of a nonlinear variable-gain fuzzy controller for FACTS devices. IEEE Trans. Contr. Syst. Technol., 12(3): 428–438. http://dx.doi.org/10.1109/TCST.2004.824332

  12. del Rosso, A.D., Canizares, C.A., Dona, V.M., 2003. A study of TCSC controller design for power system stability improvement. IEEE Trans. Power Syst. 18(4): 1487–1496. http://dx.doi.org/10.1109/TPWRS.2003.818703

  13. Divya, K.C., Nagendra Rao, P.S., 2005. A simulation model for AGC studies of hydro-hydro systems. Int. J. Electr. Power Energy Syst., 27(5–6): 335–342. http://dx.doi.org/10.1016/j.ijepes.2004.12.004

  14. Eberhart, R.C., Shi, Y.H., Kennedy, J., 2001. Swarm Intelligence. Academic Press, San Diego, CA.

  15. Elshafei, A.L., El-Metwally, K.A., Shaltout, A.A., 2005. A variable-structure adaptive fuzzy-logic stabilizer for single and multi-machine power systems. Contr. Eng. Pract., 13(4): 413–423. http://dx.doi.org/10.1016/j.conengprac.2004.03.017

  16. Falehi, A.D., 2012. Simultaneous coordinated design of TCSC-based damping controller and AVR based on PSO technique. Electr. Rev., 88(5): 136–140.

  17. Falehi, A.D., 2013. Design and scrutiny of maiden PSS for alleviation of power system oscillations using RCGA and PSO techniques. J. Electr. Eng. Technol., 8(3): 402–410. http://dx.doi.org/10.5370/JEET.2013.8.3.402

  18. Falehi, A.D., Rostami, M., 2011. Design and analysis of a novel dual-input PSS for damping of power system oscillations employing RCGA-optimization technique. Int. Rev. Electr. Eng., 6(2): 938–945.

  19. Falehi, A.D., Dankoob, A., Amirkhan, S., et al., 2011. Coordinated design of STATCOM-based damping controller and dual-input PSS to improve transient stability of power system. Int. Rev. Electr. Eng., 6(3): 1308–1318.

  20. Falehi, A.D., Rostami, M., Doroudi, A., et al., 2012. Optimization and coordination of SVC-based supplementary controllers and PSSs to improve the power system stability using genetic algorithm. Turk. J. Electr. Eng. Comput. Sci., 20(5): 639–654. http://dx.doi.org/10.3906/elk-1010-838

  21. Goshal, S.P., 2004. Optimization of PID gains by particle swarm optimization in fuzzy based automatic generation control. Electr. Power Syst. Res., 72(3): 203–212. http://dx.doi.org/10.1016/j.epsr.2004.04.004

  22. Gyugyi, L., 1992. Unified power-flow control concept for flexible AC transmission systems. IEE Proc. C, 139(4): 323–331. http://dx.doi.org/10.1049/ip-c.1992.0048

  23. Gyugyi, L., Schauder, C.D., Sen, K.K., 1997. Static synchronous series compensator: a solid-state approach to the series compensation of transmission lines. IEEE Trans Power Del., 12(1): 406–417. http://dx.doi.org/10.1109/61.568265

  24. Hingorani, N.G., Gyugyi, L., 2000. Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. IEEE Press, New York.

  25. Iracleous, D.P., Alexandridis, A.T., 2005. A multi-task automatic generation control for power regulation. Electr. Power Syst. Res., 73(3): 275–285. http://dx.doi.org/10.1016/j.epsr.2004.06.011

  26. Jang, J.S.R., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern., 23(3): 665–685. http://dx.doi.org/10.1109/21.256541

  27. Karnavas, Y.L., Papadopoulos, D.P., 2000. Excitation control of a power-generating system based on fuzzy logic and neural networks. Int. Trans. Electr. Energy Syst., 10(4): 233–241. http://dx.doi.org/10.1002/etep.4450100406

  28. Kazemi, A., Jahed Motlagh, M.R., Naghshbandy, A.H., 2007. Application of a new multi-variable feedback linearization method for improvement of power systems transient stability. Int. J. Electr. Power Energy Syst., 29(4): 322–328. http://dx.doi.org/10.1016/j.ijepes.2006.07.011

  29. Kikuchi, H., Otake, A., Nakanishi, S., 1998. Functional completeness of hierarchical fuzzy modeling. Inform. Sci., 110(1–2): 51–60. http://dx.doi.org/10.1016/S0020-0255(97)10076-7

  30. Kundur, P., Klein, M., Rogers, G.J., et al., 1989. Application of power system stabilizers for enhancement of overall system stability. IEEE Trans. Power Syst., 4(2): 614–626. http://dx.doi.org/10.1109/59.193836

  31. Larsen, E.V., Sanchez-Gasca, J.J., Chow, J.H., 1995. Concepts of design of FACTS controllers to damp power swings. IEEE Trans. Power Syst., 10(2): 948–956. http://dx.doi.org/10.1109/59.387938

  32. Lee, M.L., Chung, H.Y., Yu, F.M., 2003. Modeling of hierarchical fuzzy systems. Fuzzy Sets Syst., 138(2): 343–361. http://dx.doi.org/10.1016/S0165-0114(02)00517-1

  33. Li, B.H., Wu, Q.H., Turner, D.R., et al., 2000. Modeling of TCSC dynamics for control and analysis of power system stability. Int. J. Electr. Power Energy Syst., 22(1): 43–49. http://dx.doi.org/10.1016/S0142-0615(99)00037-X

  34. Mattavelli, P., Verghese, G.C., Stankovic, A.M., 1997. Phasor dynamics of thyristor-controlled series capacitor systems. IEEE Trans. Power Syst., 12(3): 1259–1267. http://dx.doi.org/10.1109/59.630469

  35. Moradi, A., Shirazi, K.H., Keshavarz, M., et al., 2014. Smart piezoelectric patch in non-linear beam: design, vibration control and optimal location. Trans. Instit. Meas. Contr., 36(1): 131–144. http://dx.doi.org/10.1177/0142331213495041

  36. Panda, S., Padhy, N.P., 2008. Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl. Soft Comput., 8(4): 1418–1427. http://dx.doi.org/10.1016/j.asoc.2007.10.009

  37. Raju, G., Zhou, J., Kisner, R., 1991. Hierarchical fuzzy control. Int. J. Contr., 54(5): 1201–1216. http://dx.doi.org/10.1080/00207179108934205

  38. Rojas, I., Bernier, J.L., Rodriguez-Alvarez, R., et al., 2000. What are the main functional blocks involved in the design of adaptive neuro-fuzzy inference systems? IEEEINNS-ENNS Int. Joint Conf. on Neural Networks, p.551–556. http://dx.doi.org/10.1109/IJCNN.2000.859453

  39. Soliman, H.M., Dabroum, A., Mahmoud, M.S., et al., 2011. Guaranteed-cost reliable control with regional pole placement of a power system. J. Franklin Instit., 348(5): 884–898. http://dx.doi.org/10.1016/j.jfranklin.2011.02.013

  40. Takagi, T., Sugeno, M., 1983. Derivation of fuzzy control rules from human operator’s control actions. IFAC Symp. on Fuzzy Information, Knowledge Representation and Decision Analysis, p.55–60.

  41. Talaat, H.E.A., Abdennour, A., Al-Sulaiman, A.A., 2010. Design and experimental investigation of a decentralized GA-optimized neuro-fuzzy power system stabilizer. Int. J. Electr. Power Energy Syst., 32(7): 751–759. http://dx.doi.org/10.1016/j.ijepes.2010.01.011

  42. Tan, W., Xu, Z., 2009. Robust analysis and design of load frequency controller for power systems. Electr. Power Syst. Res., 79(5): 846–853. http://dx.doi.org/10.1016/j.epsr.2008.11.005

  43. Zhang, Y., Zhou, Q., Sun, C.X., et al., 2008. RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment. IEEE Trans. Power Syst., 23(3): 853–858. http://dx.doi.org/10.1109/TPWRS.2008.922249

Download references

Author information

Correspondence to Ali Darvish Falehi.

Additional information

The Editors-in-Chief have retracted this article Falehi and Mosallanejad (2017) because of significant overlap with a previous publication by the same authors (Falehi and Mosallanejad 2016). Ali Darvish Falehi disagrees with this retraction. Ali Mosanellanejad did not respond to any correspondence about this retraction.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Falehi, A.D., Mosallanejad, A. RETRACTED ARTICLE: Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO. J. Zhejiang Univ. - Sci. C 18, 394–409 (2017) doi:10.1631/FITEE.1500317

Download citation

Key words

  • Hierarchical adaptive neuro-fuzzy inference system controller (HANFISC)
  • Thyristor-controlled series compensator (TCSC)
  • Automatic generation control (AGC)
  • Multi-objective particle swarm optimization (MOPSO)
  • Power system dynamic stability
  • Interconnected multi-source power systems

CLC number

  • TM76
  • TP391