Advertisement

H reference tracking control design for a class of nonlinear systems with time-varying delays

  • Mei-qin Liu
  • Hai-yang Chen
  • Sen-lin Zhang
Article
  • 119 Downloads

Abstract

This paper investigates the H trajectory tracking control for a class of nonlinear systems with time-varying delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. A unified model consisting of a linear delayed dynamic system and a bounded static nonlinear operator is introduced, which covers most of the nonlinear systems with bounded nonlinear terms, such as the one-link robotic manipulator, chaotic systems, complex networks, the continuous stirred tank reactor (CSTR), and the standard genetic regulatory network (SGRN). First, the definition of the tracking control is given. Second, the H performance analysis of the closed-loop system including this unified model, reference model, and state feedback controller is presented. Then criteria on the tracking controller design are derived in terms of LMIs such that the output of the closed-loop system tracks the given reference signal in the H sense. The reference model adopted here is modified to be more flexible. A scaling factor is introduced to deal with the disturbance such that the control precision is improved. Finally, a CSTR system is provided to demonstrate the effectiveness of the established control laws.

Keywords

H reference tracking Nonlinear system State feedback control Time-varying delays Unified model 

CLC number

TP273 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, C.K., 2013. Takagi-Sugeno fuzzy receding horizon H chaotic synchronization and its application to the Lorenz system. Nonl. Anal. Hybr. Syst., 9(1):1–8. [doi:10.1016/j.nahs.2013.01.002]zbMATHCrossRefGoogle Scholar
  2. Boyd, S., Ghaoui, L., Feron, E., et al., 1994. Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, USA.Google Scholar
  3. Cao, Y.Y., Frank, P.M., 2000. Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Trans. Fuzzy Syst., 8(2):200–211. [doi:10.1109/91.842153]CrossRefGoogle Scholar
  4. Chen, Y., Zheng, W., 2015. L2-L filtering for stochastic Markovian jump delay systems with nonlinear perturbations. Signal Process., 109:154–164. [doi:10.1016/ j.sigpro.2014.11.006]CrossRefGoogle Scholar
  5. Chen, Y., Xue, A., Ge, M., et al., 2007. On exponential stability for systems with state delays. J. Zhejiang Univ.-Sci. A, 8(8):1296–1303. [doi:10.1631/jzus.2007.A1296]zbMATHCrossRefGoogle Scholar
  6. Feng, J., Tang, Z., Zhao, Y., et al., 2013. Cluster synchronisation of non-linearly coupled Lur’e networks with identical and non-identical nodes and an asymmetrical coupling matrix. IET Contr. Theory Appl., 7(18):2117–2127. [doi:10.1049/iet-cta.2013.0233]zbMATHMathSciNetCrossRefGoogle Scholar
  7. Guan, X., Chen, C., 2003. Adaptive fuzzy control for chaotic systems with H tracking performance. Fuzzy Sets Syst., 139(1):81–93. [doi:10.1016/S0165-0114(02)00573-0]zbMATHMathSciNetCrossRefGoogle Scholar
  8. Hsiao, F., 2013. Robust H fuzzy control of dithered chaotic systems. Neurocomputing, 99:509–520. [doi:10.1016/j.neucom.2012.08.003]CrossRefGoogle Scholar
  9. Jin, X., Yang, G., Li, P., 2012. Robust adaptive tracking control of distributed delay systems with actuator and communication failures. Asian J. Contr., 14(5):1282–1298. [doi:10.1002/asjc.389]zbMATHCrossRefGoogle Scholar
  10. Lee, T., Park, J., Kwon, O., et al., 2013. Stochastic sampleddata control for state estimation of time-varying delayed neural networks. Neur. Netw., 46:99–108. [doi:10.1016/j.neunet.2013.05.001]zbMATHCrossRefGoogle Scholar
  11. Li, L., Wang, W., 2012. Fuzzy modeling and H control for general 2D nonlinear systems. Fuzzy Sets Syst., 207:1–26. [doi:10.1016/j.fss.2012.04.002]zbMATHCrossRefGoogle Scholar
  12. Liu, M., Zhang, S., Fan, Z., et al., 2013. Exponential H synchronization and state estimation for chaotic systems via a unified model. IEEE Trans. Neur. Netw. Learn. Syst., 24(7):1124–1126. [doi:10.1109/TNNLS.2013.2251000]Google Scholar
  13. Liu, M., Zhang, S., Chen, H., et al., 2014. H output tracking control of discrete-time nonlinear systems via standard neural network models. IEEE Trans. Neur. Netw. Learn. Syst., 25(10):1928–1935. [doi:10.1109/TNNLS.2013.2295846]MathSciNetCrossRefGoogle Scholar
  14. Liu, P., Chiang, T., 2012. H output tracking fuzzy control for nonlinear systems with time-varying delays. Appl. Soft Comput., 12(9):2963–2972. [doi:10.1016/ j.asoc.2012.04.025]CrossRefGoogle Scholar
  15. Nodland, D., Zargarzadeh, H., Jagannathan, S., 2013. Neural network-based optimal adaptive output feedback control of a helicopter UAV. IEEE Trans. Neur. Netw. Learn. Syst., 24(7):1061–1073. [doi:10.1109/TNNLS.2013.2251747]CrossRefGoogle Scholar
  16. Park, P., Co, J., Jeong, C., 2011. Reciprocally convex approach to stability of systems with time-varying delays. Automatica, 47(1):235–238. [doi:10.1016/j.automatica.2010.10.014]zbMATHMathSciNetCrossRefGoogle Scholar
  17. Peng, C., Han, Q., Yue, D., et al., 2011. Sampled-data robust H control for T-S fuzzy systems with time delay and uncertainties. Fuzzy Sets Syst., 179(1):20–23. [doi:10.1016/j.fss.2011.05.001]zbMATHMathSciNetCrossRefGoogle Scholar
  18. Suykens, J., Vandewalle, J., de Moor, B., 1996. Artificial Neural Networks for Modelling and Control of Nonlinear Systems. Springer, London.Google Scholar
  19. Yang, C., 2013. One input control of exponential synchronization for a four-dimensional chaotic system. Appl. Math. Comput., 219(10):5152–5161. [doi:10.1016/j.amc.2012.11.003]zbMATHMathSciNetCrossRefGoogle Scholar
  20. Yang, X., Liu, D., Huang, Y., 2013. Neural-networkbased online optimal control for uncertain non-linear continuous-time systems with control constraints. IET Contr. Theory Appl., 7(17):2037–2047. [doi:10.1049/iet-cta.2013.0472]MathSciNetCrossRefGoogle Scholar
  21. Yang, Y., Wu, J., Zheng, W., 2012. Trajectory tracking for an autonomous airship using fuzzy adaptive sliding mode control. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 13(7):534–543. [doi:10.1631/jzus.C1100371]CrossRefGoogle Scholar
  22. Yao, C., Zhao, Q., Yu, J., 2011. Complete synchronization induced by disorder in coupled chaotic lattices. Phys. Lett. A, 377(5):370–377. [doi:10.1016/j.physleta.2012.12.004]CrossRefGoogle Scholar
  23. Zhang, D., Yu, L., 2010. H output tracking control for neutral systems with time-varying delay and nonlinear perturbations. Commun. Nonl. Sci. Numer. Simul., 15(11):3284–3292. [doi:10.1016/j.cnsns.2009.12.032]zbMATHCrossRefGoogle Scholar
  24. Zhang, G., Shen, Y., Wang, L., 2013. Global antisynchronization of a class of chaotic memristive neural networks with time-varying delays. Neur. Netw., 46:1–8. [doi:10.1016/j.neunet.2013.04.001]zbMATHCrossRefGoogle Scholar
  25. Zhang, H., Shi, Y., Liu, M., 2013a. H step tracking control for networked discrete-time nonlinear systems with integral and predictive actions. IEEE Trans. Ind. Inform., 9(1):337–345. [doi:10.1109/TII.2012.2225434]CrossRefGoogle Scholar
  26. Zhang, H., Shi, Y., Xu, M., et al., 2013b. Observerbased tracking controller design for networked predictive control systems with uncertain Markov delays. Proc. 36th American Control Conf., p.5682–5687. [doi:10.1109/ACC.2012.6315295]Google Scholar
  27. Zhu, B., Zhang, Q., Chang, C., 2014. Delay-dependent dissipative control for a class of nonlinear system via Takagi-Sugeno fuzzy descriptor model with time delay. IET Contr. Theory Appl., 8(7):451–461. [doi:10.1049/iet-cta.2013.0438]MathSciNetCrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Industrial Control TechnologyZhejiang UniversityHangzhouChina
  2. 2.College of Electrical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations