Enhancing power transfer capability through flexible AC transmission system devices: a review

  • Fadi M. Albatsh
  • Saad Mekhilef
  • Shameem Ahmad
  • H. Mokhlis
  • M. A. Hassan


Global demand for power has significantly increased, but power generation and transmission capacities have not increased proportionally with this demand. As a result, power consumers suffer from various problems, such as voltage and frequency instability and power quality issues. To overcome these problems, the capacity for available power transfer of a transmission network should be enhanced. Researchers worldwide have addressed this issue by using flexible AC transmission system (FACTS) devices. We have conducted a comprehensive review of how FACTS controllers are used to enhance the available transfer capability (ATC) and power transfer capability (PTC) of power system networks. This review includes a discussion of the classification of different FACTS devices according to different factors. The popularity and applications of these devices are discussed together with relevant statistics. The operating principles of six major FACTS devices and their application in increasing ATC and PTC are also presented. Finally, we evaluate the performance of FACTS devices in ATC and PTC improvement with respect to different control algorithms.


FACTS devices Available transfer capability Power transfer capability Artificial intelligence 

Document code

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABB, 2012. Flexible Alternating Current Transmission Systems (FACTS). Available from Scholar
  2. Abdel-Rahman, M.H., Youssef, F.M.H., Saber, A.A., 2006. New static var compensator control strategy and coordination with under-load tap changer. IEEE Trans. Power Deliv., 21(3):1630–1635. [doi:10.1109/TPWRD. 2005.858814]Google Scholar
  3. Abido, M.A., 1999. Thyristor controlled phase shifter based stabilizer design using simulated annealing algorithm. Proc. Int. Conf. on Electric Power Engineering, p.307–312. [doi:10.1109/PTC.1999.826739]Google Scholar
  4. Abido, M.A., 2009. Power system stability enhancement using FACTS controllers: a review. Arab. J. Sci. Eng., 34(1B):153–172.MathSciNetGoogle Scholar
  5. Abraham, R.J., Das, D., Patra, A., 2007. Effect of TCPS on oscillations in tie-power and area frequencies in an interconnected hydrothermal power system. IET Gener. Transm. Distr., 1(4):632–639. [doi:10.1049/iet-gtd: 20060361]Google Scholar
  6. Acha, E., Fuerte-Esquivel, C.R., Ambríz-Pérez, H., et al., 2004. FACTS: Modelling and Simulation in Power Networks. Wiley UK.Google Scholar
  7. Acharya, N., Sode-Yome, A., Mithulananthan, N., 2005. Facts about flexible AC transmission systems (FACTS) controllers: practical installations and benefits. Proc. Australasian Universities Power Engineering Conf., p.533–538.Google Scholar
  8. Ahmad, S., Albatsh, F.M., Mekhilef, S., et al., 2014a. A placement method of fuzzy based unified power flow controller to enhance voltage stability margin. Proc. 16th European Conf. on Power Electronics and Applications, p.1–10. [doi:10.1109/EPE.2014.6910863]Google Scholar
  9. Ahmad, S., Albatsh, F.M., Mekhilef, S., et al., 2014b. An approach to improve active power flow capability by using dynamic unified power flow controller. Proc. IEEE Innovative Smart Grid Technologies-Asia, p.249–254. [doi:10.1109/ISGT-Asia.2014.6873798]Google Scholar
  10. Ahmad, S., Albatsh, F.M., Mekhilef, S., et al., 2014c. Fuzzy based controller for dynamic unified power flow controller to enhance power transfer capability. Energy Conv. Manag., 79:652–665. [doi:10.1016/j.enconman. 2013.12.042]Google Scholar
  11. Ahmad, S., Mekhilef, S., Albatsh, F.M., 2014d. Voltage stability improvement by placing unified power flow controller (UPFC) at suitable location in power system network. Proc. Saudi Arabia Smart Grid Conf., p.1–8.Google Scholar
  12. Ajami, A., Armaghan, M., 2013) A comparative study in power oscillation damping by STATCOM and SSSC based on the multiobjective PSO algorithm. Turk. J. Electr. Eng. Comput. Sci., 21: 213–224. [doi:10.3906/elk-1106-5]Google Scholar
  13. Alabduljabbar, A.A., Milanovic, J.V., 2010. Assessment of techno-economic contribution of FACTS devices to power system operation. Electr. Power Syst. Res., 80(10): 1247–1255. [doi:10.1016/j.epsr.2010.04.008]Google Scholar
  14. Albatsh, F., 2009. Multirate Ripple-Free Deadbeat Control. MS Thesis, Department of Electrical Engineering, Islamic University of Gaza Gaza, Palestine.Google Scholar
  15. Albatsh, F.M., Ahmad, S., Mekhilef, S., et al., 2014. D-Q model of fuzzy based UPFC to control power flow in transmission network. Proc. 7th IET Int. Conf. on Power Electronics, Machines and Drives, p.1–6. [doi:10.1049/ cp.2014.0397]Google Scholar
  16. Albatsh, F.M., Ahmad, S., Mekhilef, S., et al., 2015a. Dynamic power flow control for transmission lines using D-Q fuzzy based unified power flow controller. Appl. Math. Inform. Sci., 9(12):1–15.Google Scholar
  17. Albatsh, F.M., Ahmad, S., Mekhilef, S., et al., 2015b. Optimal placement of unified power flow controllers to improve dynamic voltage stability using power system variable based voltage stability indices. PLoS One, 10(4): 1–32. [doi:10.1371/journal.pone.0123802]Google Scholar
  18. Albatsh, F.M., Ahmad, S., Mekhilef, S., et al., 2015c. Power quality improvement in transmission network using fuzzy logic based unified power flow controller. Proc. IEEE Int. Conf. on Industrial Technology, p.1–6.Google Scholar
  19. Ambríz-Pérez, H., Acha, E., Fuerte-Esquivel, C.R., 2000. Advanced SVC models for Newton-Raphson load flow and Newton optimal power flow studies. IEEE Trans. Power Syst., 15(1):129–136. [doi:10.1109/59.852111]Google Scholar
  20. Arzani, A., Jazaeri, M., Alinejad-Beromi, Y., 2008. Available transfer capability enhancement using series FACTS devices in a designed multi-machine power system. Proc. 43rd Int. Universities Power Engineering Conf., p.1–6. [doi:10.1109/UPEC.2008.4651434]Google Scholar
  21. Asare, P., Diez, T., Galli, A., et al., 1994. An Overview of Flexible AC Transmission Systems. Technical Report, Department of Electrical and Computer Engineering, Purdue University USA.Google Scholar
  22. Babu, A.V.N., Sivanagaraju, S., 2012. Assessment of available transfer capability for power system network with multi-line FACTS device. Int. J. Electr. Eng., 5(1):71–78.Google Scholar
  23. Bachmann, U., Berger, F., Reinisch, R., et al., 2002. Possibilities of multifunctional FACTS application in the European electric power system under the changing conditions of the liberalized electricity market. CIGRE Session Germany.Google Scholar
  24. Basu, M., 2011.Multi-objective optimal power flow with FACTS devices. Energy Conv. Manag., 52(2):903–910. [doi:10.1016/j.enconman.2010.08.017]Google Scholar
  25. Bhasaputra, P., Ongsakul, W., 2002) Optimal power flow with multi-type of FACTS devices by hybrid TS/SA approach. Proc. IEEE Int. Conf. on Industrial Technology, 1: 285–290. [doi:10.1109/ICIT.2002.1189908]Google Scholar
  26. Bollen, M.H., 1999. Understanding Power Quality Problems: Voltage Sags and Interruptions. Wiley-IEEE Press, New York USA.Google Scholar
  27. Bulac, C., Diaconu, C., Eremia, M., et al., 2009. Power transfer capacity enhancement using SVC. Proc. IEEE Bucharest PowerTech, p.1–5. [doi:10.1109/PTC.2009. 5281833]Google Scholar
  28. Burke, E., de Causmaecker, P., Berghe, G.V., 1999. A hybrid tabu search algorithm for the nurse rostering problem. Proc. 2nd Asia-Pacific Conf. on Simulated Evolution and Learning, p.187–194. [doi:10.1007/3-540-48873-1_25]Google Scholar
  29. Cai, H., Qu, Z., Gan, D., 2002. Determination of the power transfer capacity of a UPFC with consideration of the system and equipment constraints and of installation locations. IEE Proc.-Gener. Transm. Distr., 149(1):114–120. [doi:10.1049/ip-gtd:20020002]Google Scholar
  30. Cai, L.J., Erlich, I., Stamtsis, G., 2004. Optimal choice and allocation of FACTS devices in deregulated electricity market using genetic algorithms. Proc. IEEE Power Systems Conf. and Exposition, p.201–207. [doi:10.1109/ PSCE.2004.1397562]Google Scholar
  31. Chansareewittaya, S., Jirapong, P., 2010. Power transfer capability enhancement with multitype FACTS controllers using particle swarm optimization. Proc. IEEE Region 10 Conf., p.42–47. [doi:10.1109/tencon. 2010.5685893]Google Scholar
  32. Chansareewittaya, S., Jirapong, P., 2011. Power transfer capability enhancement with optimal maximum number of FACTS controllers using evolutionary programming. Proc. 37th Annual Conf. on IEEE Industrial Electronics Society, p.4733–4738. [doi:10.1109/iecon.2011.6119996]Google Scholar
  33. Chansareewittaya, S., Jirapong, P., 2012. Total transfer capability enhancement with optimal number of FACTS controllers using hybrid TSSA. Proc. IEEE Southeastcon, p.1–7. [doi:10.1109/SECon.2012.6197079]Google Scholar
  34. Chawla, S., Garg, S., Ahuja, B., 2009. Optimal location of series-shunt FACTS device for transmission line compensation. Proc. Int. Conf. on Control, Automation, Communication and Energy Conservation, p.1–6.Google Scholar
  35. Chengaiah, C., Satyanarayana, R.V.S., 2012. Power flow assessment in transmission lines using Simulink model with UPFC. Proc. Int. Conf. on Computing, Electronics and Electrical Technologies, p.151–155. [doi:10.1109/ICCEET.2012.6203778]Google Scholar
  36. Chiang, H.D., Flueck, A.J., Shah, K.S., et al., 1995. CPFLOW: a practical tool for tracing power system steady-state stationary behavior due to load and generation variations. IEEE Trans. Power Syst., 10(2): 623–634. [doi:10.1109/59.387897]Google Scholar
  37. Chung, C.Y., Wang, K.W., Tse, C.T., et al., 2002. Powersystem stabilizer (PSS) design by probabilistic sensitivity indexes (PSIs). IEEE Trans. Power Syst., 17(3):688–693. [doi:10.1109/TPWRS.2002.800914]Google Scholar
  38. Del Rosso, A.D., Canizares, C.A., Dona, V.M., 2003) A study of TCSC controller design for power system stability improvement. IEEE Trans. Power Syst., 18: 1487–1496.Google Scholar
  39. Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. Proc. 6th Int. Symp. on Micro Machine and Human Science, p.39–43.Google Scholar
  40. Eberhart, R.C., Shi, Y., 2001. Particle swarm optimization: developments, applications and resources. Proc. Congress on Evolutionary Computation, p.81–86. [doi:10.1109/CEC.2001.934374]Google Scholar
  41. El-Sadek, M.Z., Dessouky, M.M., Mahmoud, G.A., et al., 1997. Enhancement of steady-state voltage stability by static VAR compensators. Electr. Power Syst. Res., 43(3):179–185. [doi:10.1016/S0378-7796(97)01179-6]Google Scholar
  42. Elsayed, B.A., Hassan, M.A., Mekhilef, S., 2013. Decoupled third-order fuzzy sliding model control for cart-inverted pendulum system. Appl. Math. Inform. Sci., 7(1):193–201.MathSciNetGoogle Scholar
  43. Esmaeili, A., Esmaeili, S., 2012 A new multiobjective optimal allocation of multitype FACTS devices for total transfer capability enhancement and improving line congestion using the harmony search algorithm. Turk. J. Electr. Eng. Comput. Sci., 21: 957–979. [doi:10.3906/ elk-1108-66]Google Scholar
  44. Farahmand, H., Rashidinejad, M., Mousavi, A., et al., 2012. Hybrid mutation particle swarm optimisation method for available transfer capability enhancement. Int. J. Electr. Power Energy Syst., 42(1):240–249. [doi:10.1016/j.ijepes. 2012.04.020]Google Scholar
  45. Fardanesh, B., 2004. Optimal utilization, sizing, and steadystate performance comparison of multiconverter VSCbased FACTS controllers. IEEE Trans. Power Deliv., 19(3):1321–1327. [doi:10.1109/TPWRD.2004.829154]Google Scholar
  46. Gama, C., Ängquist, L., Ingeström, G., et al., 2000. Commissioning and operative experience of TCSC for damping power oscillation in the Brazilian north-south interconnection. Proc. CIGRE Session, Paper 14–104.Google Scholar
  47. Ge, S.Y., Chung, T.S., 1999. Optimal active power flow incorporating power flow control needs in flexible AC transmission systems. IEEE Trans. Power Syst., 14(2): 738–744. [doi:10.1109/59.761906]Google Scholar
  48. Gerbex, S., Cherkaoui, R., Germond, A.J., 2001. Optimal location of multi-type FACTS devices in a power system by means of genetic algorithms. IEEE Trans. Power Syst., 16(3):537–544. [doi:10.1109/59.932292]Google Scholar
  49. Gitizadeh, M., Kalantar, M., 2009. Optimum allocation of FACTS devices in FARS regional electric network using genetic algorithm based goal attainment. J. Zhejiang Univ.-Sci. A, 10(4):478–487. [doi:10.1631/jzus.A0820130]zbMATHGoogle Scholar
  50. Goffe, W.L., Ferrier, G.D., Rogers, J., 1994. Global optimization of statistical functions with simulated annealing. J. Econom., 60(1–2):65–99. [doi:10.1016/0304-4076(94)90038-8]zbMATHGoogle Scholar
  51. Goldberg, D.E., Holland, J.H., 1988. Genetic algorithms and machine learning. Mach. Learn., 3(2–3): 95–99. [doi:10. 1023/A:1022602019183]Google Scholar
  52. Grigsby, L.L., 2012. Power System Stability and Control (3rd Ed.). CRC Press USA.Google Scholar
  53. Grijalva, S., Sauer, P.W., 1999. Reactive power considerations in linear ATC computation. Proc. 32nd Annual Hawaii Int. Conf. on Systems Sciences, p.327–340. [doi:10.1109/HICSS.1999.772870]Google Scholar
  54. Gyugyi, L., Schauder, C.D., Williams, S.L., et al., 1995. The unified power flow controller: a new approach to power transmission control. IEEE Trans. Power Deliv., 10(2): 1085–1097. [doi:10.1109/61.400878]Google Scholar
  55. Hamoud, G., 2000. Assessment of available transfer capability of transmission systems. IEEE Trans. Power Syst., 15(1):27–32. [doi:10.1109/59.852097]Google Scholar
  56. Han, Y.S., Suh, I.Y., Kim, J.M., et al., 2004. Commissioning and testing of the KangJin UPFC in Korea. Proc. CIGRE Session.Google Scholar
  57. Handfield, R., Walton, S.V., Sroufe, R., et al., 2002. Applying environmental criteria to supplier assessment: a study in the application of the analytical hierarchy process. Eur. J. Oper. Res., 1411:70–87. [doi:10.1016/ S0377-;2217(01)00261-2]zbMATHGoogle Scholar
  58. Haque, M.H., 2004. Power flow control and voltage stability limit: regulating transformer versus UPFC. IEE Proc.-Gener. Transm. Distr., 151(3):299–304. [doi:10.1049/ipgtd: 20040379]Google Scholar
  59. Hashemi, Y., Kazemzadeh, R., Azizian, M.R., et al., 2012. Improving power system dynamic performance using attuned design of dual-input PSS and UPFC PSD controller. Front. Electr. Electron. Eng., 7(4):416–426. [doi:10.1007/s11460-012-0219-6]Google Scholar
  60. Hashmani, A.A., Wang, Y., Lie, T.T., 2001. Design and application of a nonlinear coordinated excitation and TCPS controller in power systems. Proc. American Control Conf., p.811–816. [doi:10.1109/ACC.2001. 945815]Google Scholar
  61. Hingorani, N.G., 1993. Flexible AC transmission. IEEE Spect., 30(4):40–45. [doi:10.1109/6.206621]Google Scholar
  62. Hingorani, N.G., Gyugyi, L., 1999. Understanding FACTS: Concept and Technology of Flexible AC Transmission Systems. Wiley-IEEE Press, New York USA.Google Scholar
  63. Holmberg, D., Danielsson, M., Halvarsson, P., et al., 1998. The stode thyristor controlled series capacitor. Proc. CIGRE Session.Google Scholar
  64. Holmes, D.G., Lipo, T.A., 2003. Pulse Width Modulation for Power Converters: Principles and Practice. Wiley-IEEE Press USA.Google Scholar
  65. Huang, Z., Ni, Y., Shen, C., et al., 2000. Application of unified power flow controller in interconnected power systems—modeling, interface, control strategy, and case study. IEEE Trans. Power Syst., 15(2):817–824. [doi:10. 1109/59.867179]Google Scholar
  66. Idris, R.M., Khairuddin, A., Mustafa, M.W., 2009a. Optimal allocation of FACTS devices for ATC enhancement using bees algorithm. Int. Scholarly Sci. Res. Innov., 3(6):257–264.Google Scholar
  67. Idris, R.M., Kharuddin, A., Mustafa, M.W., 2009b. Optimal choice of FACTS devices for ATC enhancement using bees algorithm. Proc. Australasian Universities Power Engineering Conf., p.1–6.Google Scholar
  68. Idris, R.M., Khairuddin, A., Mustafa, M.W., 2010. Optimal allocation of FACTS devices in deregulated electricity market using bees algorithm. WSEAS Trans. Power Syst., 5(2):108–119.Google Scholar
  69. Islam, M., Mekhilef, S., Albatsh, F.M., 2014. An improved transformerless grid connected photovoltaic inverter with common mode leakage current elimination. Proc. 7th Int. Conf. on Power Electronics, Machines and Drives, p.1–6. [doi:10.1049/cp.2014.0296]Google Scholar
  70. Iwamoto, S., Tamura, Y., 1981. A load flow calculation method for ill-conditioned power systems. IEEE Trans. Power App. Syst., PAS- 100(4):1736–1743. [doi:10.1109/ TPAS.1981.316511]Google Scholar
  71. Jain, T., Singh, S.N., Srivastava, S.C., 2009. Dynamic ATC enhancement through optimal placement of FACTS controllers. Electr. Power Syst. Res., 79(11):1473–1482. [doi:10.1016/j.epsr.2009.04.019]Google Scholar
  72. Jiang, X., Fang, X., Chow, J.H., et al., 2008. A novel approach for modeling voltage-sourced converter-based FACTS controllers. IEEE Trans. Power Deliv., 23(4): 2591–2598. [doi:10.1109/TPWRD.2008.923535]Google Scholar
  73. Jovcic, D., Pillai, G.N., 2005) Analytical modeling of TCSC dynamics. IEEE Trans. Power Deliv., 20: 1097–1104.Google Scholar
  74. Kakimoto, N., Phongphanphanee, A., 2003) Subsynchronous resonance damping control of thyristor-controlled series capacitor. IEEE Trans. Power Deliv., 18: 1051–1059.Google Scholar
  75. Kannan, S., Jayaram, S., Salama, M.M.A., 2004. Real and reactive power coordination for a unified power flow controller. IEEE Trans. Power Syst., 19(3):1454–1461. [doi:10.1109/TPWRS.2004.831690]Google Scholar
  76. Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. Proc. IEEE Int. Conf. on Neural Networks, p.1942–1948.Google Scholar
  77. Khaburi, M.A., Haghifam, M.R., 2010. A probabilistic modeling based approach for total transfer capability enhancement using FACTS devices. Int. J. Electr. Power Energy Syst., 32(1):12–16. [doi:10.1016/j.ijepes.2009.06.015]Google Scholar
  78. Klir, G.J., Yuan, B., 1995. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Vol. 4. Prentice Hall, New Jersey USA.Google Scholar
  79. Komoni, V., Krasniqi, I., Kabashi, G., et al., 2010. Increase power transfer capability and controlling line power flow in power system installed the FACTS. Proc. 7th Mediterranean Conf. and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion, p.1–6. [doi:10.1049/cp.2010.0920]Google Scholar
  80. Kumar, A., Kumar, J., 2012. Comparison of UPFC and SEN transformer for ATC enhancement in restructured electricity markets. Int. J. Electr. Power Energy Syst., 41(1):96–104. [doi:10.1016/j.ijepes.2012.03.019]Google Scholar
  81. Kumar, A., Kumar, J., 2013. ATC determination with FACTS devices using PTDFs approach for multi-transactions in competitive electricity markets. Int. J. Electr. Power Energy Syst., 44(1):308–317. [doi:10.1016/j.ijepes.2012. 07.050]Google Scholar
  82. Lamoree, J., Mueller, D., Vinett, P., et al., 1994. Voltage sag analysis case studies. IEEE Trans. Ind. Appl., 30(4): 1083–1089.Google Scholar
  83. Leung, H.C., Chung, T.S., 2000. Optimal power flow with a versatile FACTS controller by genetic algorithm approach. Proc. 5th Int. Conf. on Adavances in Power System Control, Operation and Management, p.178–183. [doi:10.1049/cp:20000387]Google Scholar
  84. Li, N., Xu, Y., Chen, H., 2000. FACTS-based power flow control in interconnected power system. IEEE Trans. Power Syst., 15(1):257–262. [doi:10.1109/59.852130]Google Scholar
  85. Lin, H.X., 2001. Main problems of modern power quality. Power Syst. Technol., 25(10):5–12 (in Chinese).Google Scholar
  86. Ma, J.Z., Wu, M.L., Yang, S.B., 2009. The application of SVC for the power quality control of electric railways. Proc. Int. Conf. on Sustainable Power Generation and Supply, p.1–4. [doi:10.1109/SUPERGEN.2009.5347939]Google Scholar
  87. Madhusudhanarao, G., Ramarao, P.V., Kumar, T.J., 2010. Optimal location of TCSC and SVC for enhancement of ATC in a de-regulated environment using RGA. Proc. IEEE Int. Conf. on Computational Intelligence and Computing Research, p.1–6. [doi:10.1109/ICCIC.2010.5705874]Google Scholar
  88. Mahdavi, M., Fesanghary, M., Damangir, E., 2007. An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput., 188(2): 1567–1579. [doi:10.1016/j.amc.2006.11.033]MathSciNetzbMATHGoogle Scholar
  89. Manikandan, B., 2010. Enhancement of Available Transfer Capability with FACTS Device in the Competitive Power Market. Available from Scholar
  90. Manikandan, B.V., Raja, S.C., Venkatesh, P., 2011. Available transfer capability enhancement with FACTS devices in the deregulated electricity market. J. Electr. Eng. Technol., 6(1):14–24.Google Scholar
  91. Manohar, J.N., Amarnath, J., 2012. Statistical analysis of power system on enhancement of available transfer capability-applying FACTS. Int. J. Multidiscip. Sci. Eng., 3(7):33–37.Google Scholar
  92. Masuta, T., Yokoyama, A., 2006. ATC enhancement considering transient stability based on optimal power flow control by UPFC. Proc. Int. Conf. on Power System Technology, p.1–6. [doi:10.1109/ICPST.2006.321766]Google Scholar
  93. Menniti, D., Scordino, N., Sorrentino, N., 2006. A new method for SSSC optimal location to improve power system available transfer capability. Proc. IEEE PES Power Systems Conf. and Exposition, p.938–945. [doi:10. 1109/PSCE.2006.296439]Google Scholar
  94. Moraglio, A., di Chio, C., Poli, R., 2007. Geometric particle swarm optimisation. Proc. 10th European Conf. on Genetic Programming, p.125–136. [doi:10.1007/978-3-540-71605-1_12]Google Scholar
  95. Mori, H., Goto, Y., 2000. A parallel tabu search based method for determining optimal allocation of FACTS in power systems. Proc. Int. Conf. on Power System Technology, p.1077–1082. [doi:10.1109/ICPST.2000.897170]Google Scholar
  96. Motoki, H., Yokoyama, A., 2004. Study on optimal power flow control for ATC enhancement by UPFC and its performance evaluation. Proc. Annual Conf. of Power & Energy Society.Google Scholar
  97. Nagalakshmi, S., Kamaraj, N., 2012) Comparison of computational intelligence algorithms for loadability enhancement of restructured power system with FACTS devices. Swarm Evol. Comput., 5: 17–27. [doi:10.1016/j.swevo.2012.02.002]Google Scholar
  98. Naidoo, R., Pillay, P., 2007. A new method of voltage sag and swell detection. IEEE Trans. Power Deliv., 22(2):1056–1063. [doi:10.1109/TPWRD.2007.893185]Google Scholar
  99. Naidu, K., Mokhlis, H., Bakar, A.H.A., 2014) Multiobjective optimization using weighted sum artificial bee colony algorithm for load frequency control. Int. J. Electr. Power Energy Syst., 55: 657–667. [doi:10.1016/j.ijepes.2013.10.022]Google Scholar
  100. Naik, R.S., Vaisakh, K., Anand, K., 2010. Application of TCSC for enhancement of ATC with PTDF in power transmission system. Proc. Int. Conf. on Intelligent and Advanced Systems, p.1–6. [doi:10.1109/icias.2010.5716152]Google Scholar
  101. Nimje, A.A., Panigrahi, C.K., Mohanty, A.K., 2011. Enhanced power transfer capability by using SSSC. J. Mech. Eng. Res., 3(2):48–56.Google Scholar
  102. Noroozian, M., Petersson, N.A., Thorvaldson, B., et al., 2003. Benefits of SVC and STATCOM for electric utility application. Proc. IEEE PES Transmission and Distribution Conf. and Exposition, p.1143–1150. [doi:10.1109/TDC.2003.1335111]Google Scholar
  103. Omoigui, M., Ojo, O., Karugaba, S., 2008. Analysis of multiterminal unified power flow controller for power transfer. Proc. 40th North American Power Symp., p.1–7. [doi:10.1109/naps.2008.5307392]Google Scholar
  104. Ongsakul, W., Bhasaputra, P., 2002. Optimal power flow with FACTS devices by hybrid TS/SA approach. Int. J. Electr. Power Energy Syst., 24(10):851–857. [doi:10.1016/S0142-0615(02)00006-6]Google Scholar
  105. Ongsakul, W., Jirapong, P., 2005. Optimal allocation of FACTS devices to enhance total transfer capability using evolutionary programming. Proc. IEEE Int. Symp. on Circuits and Systems, p.4175–4178. [doi:10.1109/ISCAS.2005.1465551]Google Scholar
  106. Ooi, B.T., Kazerani, M., Marceau, R., et al., 1997. Mid-point siting of FACTS devices in transmission lines. IEEE Trans. Power Deliv., 12(4):1717–1722. [doi:10.1109/61.634196]Google Scholar
  107. Oskoui, A., Mathew, B., Hasler, J., et al., 2006. Holly STATCOM-FACTS to replace critical generation, operational experience. Proc. IEEE PES Transmission and Distribution Conf. and Exhibition, p.1393–1398. [doi:10.1109/TDC.2006.1668723]Google Scholar
  108. Ou, Y., Singh, C., 2002. Assessment of available transfer capability and margins. IEEE Trans. Power Syst., 17(2):463–468. [doi:10.1109/TPWRS.2002.1007919]Google Scholar
  109. Padiyar, K.R., 2007. FACTS Controllers in Power Transmission and Distribution. Motilal UK Books of India, India.Google Scholar
  110. Panda, S., Padhy, N.P., 2008. Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl. Soft Comput., 8(4):1418–1427. [doi:10.1016/j.asoc.2007.10.009]Google Scholar
  111. Pandey, R.K., Chaitanya, D.V.S.B., 2012. An effective approach for ATC enhancement with FACTS device—a case study. Proc. Int. Conf. on Advances in Power Conversion and Energy Technologies, p.1–6. [doi:10.1109/apcet.2012.6301989]Google Scholar
  112. Papic, I., Zunko, P., Povh, D., et al., 1997. Basic control of unified power flow controller. IEEE Trans. Power Syst., 12(4): 1734–1739. [doi:10.1109/59.627884]Google Scholar
  113. Parsopoulos, K.E., Vrahatis, M.N., 2002) Particle swarm optimization method for constrained optimization problems. Intell. Technol. Theory Appl., 76: 214–220.Google Scholar
  114. Partovi, F.Y., Burton, J., Banerjee, A., 1990. Application of analytical hierarchy process in operations management. Int. J. Oper. Prod. Manag., 10(3):5–19. [doi:10.1108/01443579010134945]Google Scholar
  115. Paserba, J.J., 2003. How FACTS controllers-benefit AC transmission systems. Proc. IEEE PES Transmission and Distribution Conf. and Exposition, p.949–956. [doi:10.1109/TDC.2003.1335066]Google Scholar
  116. Perkins, B.K., Iravani, M.R., 1997 Dynamic modeling of a TCSC with application to SSR analysis. IEEE Trans. Power Syst., 12: 1619–1625.Google Scholar
  117. Pham, D., Ghanbarzadeh, A., Koc, E., et al., 2006a. The bees algorithm—a novel tool for complex optimisation problems. Proc. 2nd Virtual Int. Conf. on Intelligent Production Machines and Systems, p.454-459.Google Scholar
  118. Pham, D.T., Soroka, A.J., Ghanbarzadeh, A., et al., 2006b. Optimising neural networks for identification of wood defects using the bees algorithm. Proc. IEEE Int. Conf. on Industrial Informatics, p.1346–1351. [doi:10.1109/INDIN.2006.275855]Google Scholar
  119. Pilotto, L.A.S., Bianco, A., Long, W.F., et al., 2003 Impact of TCSC control methodologies on subsynchronous oscillations. IEEE Trans. Power Deliv., 18: 243–252.Google Scholar
  120. Price, K., Storn, R.M., Lampinen, J.A., 2005. Differential Evolution: a Practical Approach to Global Optimization. Springer Germany. [doi:10.1007/3-540-31306-0]Google Scholar
  121. Qin, A.K., Huang, V.L., Suganthan, P.N., 2009. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput., 13(2):398–417. [doi:10.1109/TEVC.2008.927706]Google Scholar
  122. Ramesh, M., Laxmi, A.J., 2012. Stabilty of power transmission capability of HVDC system using FACTS controllers. Proc. Int. Conf. on Computer Communication and Informatics, p.1–7. [doi:10.1109/iccci.2012.6158889]Google Scholar
  123. Ramey, D.G., Henderson, M., 2007. Overview of a special publication on transmission system application requirements for FACTS controllers. Proc. Power Engineering Society General Meeting, p.1–5.Google Scholar
  124. Rao, K.S., Kumar, B.K., 2011. Placement of SVC for minimizing losses and maximizing total transfer capability using particle swarm optimization. Proc. IET Conf. on Renewable Power Generation, p.1–5. [doi:10.1049/cp.2011.0161]Google Scholar
  125. Rashed, G.I., Sun, Y., Shaheen, H.I., 2012) Optimal location and parameter setting of TCSC for loss minimization based on differential evolution and genetic algorithm. Phys. Proced., 33: 1864–1878. [doi:10.1016/j.phpro.2012.05.296]Google Scholar
  126. Rashidinejad, M., Farahmand, H., Fotuhi-Firuzabad, M., et al., 2008. ATC enhancement using TCSC via artificial intelligent techniques. Electr. Power Syst. Res., 78(1): 11–20. [doi:10.1016/j.epsr.2006.12.005]Google Scholar
  127. Ren, H., Watts, D., Mi, Z., et al., 2009. A review of FACTS’ practical consideration and economic evaluation. Proc. Asia-Pacific Power and Energy Engineering Conf., p.1–5. [doi:10.1109/APPEEC.2009.4918115]Google Scholar
  128. Renz, B.A., Keri, A., Mehraban, A.S., et al., 1999. AEP unified power flow controller performance. IEEE Trans. Power Deliv., 14(4):1374–1381. [doi:10.1109/61.796231]Google Scholar
  129. Rewatkar, S.B., Kewte, S.G., 2009. Role of power electronics based FACTS controller SVC for mitigation of power quality problems. Proc. 2nd Int. Conf. on Emerging Trends in Engineering and Technology, p.731–735. [doi:10.1109/icetet.2009.197]Google Scholar
  130. Saaty, T.L., 1977. A scaling method for priorities in hierarchical structures. J. Math. Psychol., 15(3):234–281. [doi:10.1016/0022-2496(77)90033-5]MathSciNetzbMATHGoogle Scholar
  131. Sahadat, M.N., Al Masood, N., Hossain, M.S., et al., 2011. Real power transfer capability enhancement of transmission lines using SVC. Proc. Asia-Pacific Power and Energy Engineering Conf., p.1–4. [doi:10.1109/appeec.2011.5748663]Google Scholar
  132. Saltelli, A., Chan, K., Scott, E.M., 2000. Sensitivity Analysis. Wiley, New York USA.Google Scholar
  133. Sannino, A., Svensson, J., Larsson, T., 2003. Powerelectronic solutions to power quality problems. Electr. Power Syst. Res., 66(1):71–82. [doi:10.1016/S0378-7796 (03)00073-7]Google Scholar
  134. Sawhney, H., Jeyasurya, B., 2004. Application of unified power flow controller for available transfer capability enhancement. Electr. Power Syst. Res., 69(2-3):155–160. [doi:10.1016/j.epsr.2003.07.012]Google Scholar
  135. Schauder, C., Mehta, H., 1993. Vector analysis and control of advanced static VAR compensators. IEE Proc. C, 140(4):299–306. [doi:10.1049/ip-c.1993.0044]Google Scholar
  136. Sen, K.K., 1998. SSSC-static synchronous series compensator: theory, modeling, and application. IEEE Trans. Power Deliv., 13(1):241–246. [doi:10.1109/61.660884]Google Scholar
  137. Sen, K.K., Stacey, E.J., 1998. UPFC-unified power flow controller: theory, modeling, and applications. IEEE Trans. Power Deliv., 13(4):1453–1460. [doi:10.1109/61. 714629]Google Scholar
  138. Shakarami, M.R., Kazemi, A., 2010. Robust design of static synchronous series compensator-based stabilizer for damping inter-area oscillations using quadratic mathematical programming. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(4):296–306. [doi:10.1631/jzus.C0910428]Google Scholar
  139. Shirmohammadi, D., Hong, H.W., Semlyen, A., et al., 1988. A compensation-based power flow method for weakly meshed distribution and transmission networks. IEEE Trans. Power Syst., 3(2):753–762.Google Scholar
  140. Siemens, 2012. Discover the World of FACTS Technology. Available from Scholar
  141. Singh, B., Saha, R., 2008. Enhancing power transfer capacity of transmission system by a reduced magnetics based 48-pulse STATCOM controller. Proc. Joint Int. Conf. on Power System Technology and IEEE Power India Conf., p.1–8. [doi:10.1109/icpst.2008.4745288]Google Scholar
  142. Sood, V.K., 2004. HVDC and FACTS Controllers: Applications of Static Converters in Power Systems. Springer.Google Scholar
  143. Sookananta, B., Galloway, S.J., Burt, G.M., et al., 2007. Employment of power transfer distribution factor for the optimal placement of FACTS devices. Proc. Int. Power Engineering Conf., p.569–573.Google Scholar
  144. Spee, R., Zhu, W., 1992. Flexible AC transmission systems simulation and control. Proc. 3rd AFRICON Conf., p.65–68. [doi:10.1109/AFRCON.1992.624419]Google Scholar
  145. Srinu Naik, R., Vaisakh, K., Anand, K., 2010. Determination of ATC with PTDF using linear methods in presence of TCSC. Proc. 2nd Int. Conf. on Computer and Automation Engineering, p.146–151. [doi:10.1109/iccae.2010.5451495]Google Scholar
  146. Subcommittee, P.M., 1979) IEEE reliability test system. IEEE Trans. Power App. Syst., 6: 2047–2054.Google Scholar
  147. Sun, J., Czarkowski, D., Zabar, Z., 2002. Voltage flicker mitigation using PWM-based distribution STATCOM. Proc. IEEE Power Engineering Society Summer Meeting, p.616–621. [doi:10.1109/PESS.2002.1043313]Google Scholar
  148. Takasaki, M., 2006. Power transfer capability enhancement with UPFC under circumstances of uncertain power flow pattern. Proc. IEEE PES Transmission and Distribution Conf. and Exhibition, p.659–665. [doi:10.1109/tdc.2006.1668575]Google Scholar
  149. Tang, B.F., Fan, H., Wang, X.W., et al., 2010. The dynamic simulation research on application of SVC in the south Hebei power grid. Proc. China Int. Conf. on Electricity Distribution, p.1–4.Google Scholar
  150. Trzynadlowski, A.M., Blaabjerg, F., Pedersen, J.K., et al., 1994. Random pulse width modulation techniques for converter-fed drive systems—a review. IEEE Trans. Ind. Appl., 30(5):1166–1175. [doi:10.1109/28.315226]Google Scholar
  151. Tsoulos, I.G., 2008. Modifications of real code genetic algorithm for global optimization. Appl. Math. Comput., 203(2):598–607. [doi:10.1016/j.amc.2008.05.005]MathSciNetzbMATHGoogle Scholar
  152. van Laarhoven, P.J., Aarts, E.H., 1987. Simulated Annealing. Springer.zbMATHGoogle Scholar
  153. Vara Prasad, J., Sai Ram, I., Jayababu, B., 2011. Genetically optimized FACTS controllers for available transfer capability enhancement. Int. J. Comput. Appl., 19(4):23–27.Google Scholar
  154. Vasquez-Arnez, R.L., Zanetta, L.C., 2008. A novel approach for modeling the steady-state VSC-based multiline FACTS controllers and their operational constraints. IEEE Trans. Power Deliv., 23(1):457–464. [doi:10.1109/TPWRD.2007.905564]Google Scholar
  155. Venkatesh, B., George, M.K., Gooi, H.B., 2004. Fuzzy OPF incorporating UPFC. IEE Proc. C, 151(5):625–629. [doi:10.1049/ip-gtd:20040611]Google Scholar
  156. Venter, G., Sobieszczanski-Sobieski, J., 2003. Particle swarm optimization. AIAA J., 41(8):1583–1589.Google Scholar
  157. Visakha, K., Thukaram, D., Jenkins, L., 2004. Application of UPFC for system security improvement under normal and network contingencies. Electr. Power Syst. Res., 70(1):46–55. [doi:10.1016/j.epsr.2003.11.011]Google Scholar
  158. Wang, H.F., Swift, F.J., Li, M., 1997. Analysis of thyristorcontrolled phase shifter applied in damping power system oscillations. Int. J. Electr. Power Energy Syst., 19(1):1–9. [doi:10.1016/S0142-0615(96)00020-8]Google Scholar
  159. Watts, D., Ren, H., 2007. FACTS: characteristics, applications and economic value: a literature review. Proc. 7th IASTED Int. Conf. on Power and Energy Systems, p.450–455.Google Scholar
  160. Xiong, W.Q., Zhang, Y.P., Wei, P., 2004. An improved realcode genetic algorithm. Proc. Int. Conf. on Machine Learning and Cybernetics, p.2361–2364.Google Scholar
  161. Yang, H.T., Yang, P.C., Huang, C.L., 1996. Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions. IEEE Trans. Power Syst., 11(1):112–118. [doi:10.1109/59.485992]Google Scholar
  162. Yousefi-Talouki, A., Gholamian, S.A., Hosseini, M., et al., 2010. Optimal power flow with unified power flow controller using artificial bee colony algorithm. Int. Rev. Electr. Eng., 5(6):2773–2782.Google Scholar
  163. Yuryevich, J., Wong, K.P., 1999. Evolutionary programming based optimal power flow algorithm. IEEE Trans. Power Syst., 14(4):1245–1250. [doi:10.1109/59.801880]Google Scholar
  164. Zhang, X.P., Handschin, E.J., 2001. Advanced implementation of UPFC in a nonlinear interior-point OPF. IEE Proc. C, 148(5):489–496. [doi:10.1049/ip-gtd:20010476]Google Scholar
  165. Zhang, X.P., Handschin, E., Yao, M., 2004. Multi-control functional static synchronous compensator (STATCOM) in power system steady-state operations. Electr. Power Syst. Res., 72(3):269–278. [doi:10.1016/j.epsr.2004.04. 011]Google Scholar
  166. Zhang, X.P., Rehtanz, C., Pal, B., 2012. Flexible AC Transmission Systems: Modelling and Control. Springer.Google Scholar
  167. Zhang, Y.K., Zhang, Y., 2006. A novel power injection model of embedded SSSC with multi-control modes for power flow analysis inclusive of practical constraints. Electr. Power Syst. Res., 76(5):374–381. [doi:10.1016/j.epsr.2005.06.008]Google Scholar
  168. Zheng, J.G., Wang, X., 2011. Diversity composite differential evolution algorithm for constrained optimization problems. Comput. Integ. Manuf. Syst., 17(11):2447–2456.Google Scholar
  169. Zheng, Z., Yang, G., Geng, H., 2013. Coordinated control of a doubly-fed induction generator-based wind farm and a static synchronous compensator for low voltage ridethrough grid code compliance during asymmetrical grid faults. Energies, 6(9):4660–4681. [doi:10.3390/en6094660]Google Scholar
  170. Zhong, W.L., Wang, H.S., Zhang, J., et al., 2008. Novel particle swarm optimization with heuristic mutation. Comput. Eng. Des., 29(13):3402–3406 (in Chinese).Google Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fadi M. Albatsh
    • 1
  • Saad Mekhilef
    • 1
  • Shameem Ahmad
    • 1
  • H. Mokhlis
    • 2
  • M. A. Hassan
    • 3
  1. 1.Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Electrical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Engineering Design and ManufactureUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations