Skip to main content
Log in

On the mechanical degradation of R/SFRC beams under flexural fatigue loading

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Present research brings the analysis of the influence of steel fibers on the mechanical degradation of reinforced concrete beams under flexural fatigue loading. Current experimental work aims to emphasize the fiber capacity in mitigating the mechanical decay of the concrete structures in terms of rebar deformation, crack spacing and other mechanical parameters. The experimental campaign encompassed reinforced concrete beams with low reinforcing ratio of 0.35%. While two beams were produced with plain concrete, the other two were fabricated with the addition of 40 kg/m3 of hooked-end steel fibers. The fatigue tests were load-controlled under a 6 Hz sinusoidal wave under distinct loading level ranges. When comparing the same loading range, steel fiber reinforced concrete structural beams reported much lower strain values along the fatigue test. The fibers showed a very effective capacity to redistribute the stresses in the traction zone and, consequently, reducing the measured strains on the longitudinal reinforcement. Similar mechanical deterioration was observed when it comes to the analysis of deflection and curvature evolution along the fatigue test. The rate of mechanical deterioration is linked to the applied stress levels. The growth of one main crack reveals that the fatigue rupture was controlled by the stress concentrations in the tensile rebars at the crack location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Holmen J (1984) Fatigue design evaluation of offshore concrete structures. Matér Constr 17:39–42. https://doi.org/10.1007/BF02474054

    Article  Google Scholar 

  2. Belletti B, Cerioni R, Meda A, Plizzari G (2008) Design aspects on steel fiber-reinforced concrete pavements. J Mater Civ Eng 20:599–607. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:9(599)

    Article  Google Scholar 

  3. Aglan H, Figueroa J (1993) Damage-evolution approach to fatigue cracking in pavements. J Eng Mech 119:1243–1259. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:6(1243)

    Article  Google Scholar 

  4. Tian S, Zhang X, Hu W (2022) Fatigue analysis of CFRP-reinforced concrete ribbed girder bridge deck slabs. Polymers. https://doi.org/10.3390/polym14183814

    Article  Google Scholar 

  5. Sritharan S, Schmitz G (2013) Design of tall wind turbine towers utilizing UHPC. In: RILEM-fib-AFGC international symposium on ultra-high performance fibre-reinforced concrete

  6. Göransson F, Nordenmark, A (2011) Fatigue assessment of concrete foundations for wind power plants. MSc dissertation. 142 p. Göteborg, Sweden: Chalmers University of Technology

  7. Subramaniam K, O’Neil E, Popovics J, Shah S (2000) Crack propagation in flexural fatigue of concrete. J Eng Mech 126:891–898. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(891)

    Article  Google Scholar 

  8. Subramaniam K, Goldstein G, Popovics J, Shah S (1999) Fatigue response of concrete subjected to biaxial fatigue in the compression-tension region. ACI Mater J 96:663–669

    Google Scholar 

  9. de la Zanuy C, Fuente P, Albajar L (2007) Effect of fatigue degradation of the compression of concrete in reinforced concrete sections. Eng Struct 29:2908–2920. https://doi.org/10.1016/j.engstruct.2007.01.030

    Article  Google Scholar 

  10. Mu B, Subramaniam K, Shah S (2004) failure mechanism of concrete under fatigue compressive load. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(566)

    Article  Google Scholar 

  11. Oh B (1991) Fatigue-life distributions of concrete for various stress levels. ACI Mater J 88:122–128. https://doi.org/10.14359/1870

    Article  Google Scholar 

  12. Subramaniam K, Popovics J, Shah S (2002) Fatigue fracture of concrete subjected to biaxial stresses in the tensile C-T region. J Eng Mech 128:668–676. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:6(668)

    Article  Google Scholar 

  13. Chui K, Xu L, Li L, Chi Y (2023) Mechanical performance of steel-polypropylene hybrid fiber reinforced concrete subject to uniaxial constant-amplitude cyclic compression: fatigue behavior and unified fatigue equation. Compos Struct. https://doi.org/10.1016/j.compstruct.2023.116795

    Article  Google Scholar 

  14. Gao L, Hsu T (1998) Fatigue of concrete under uniaxial compression cyclic loading. ACI Mater 95:575–581

    Google Scholar 

  15. Cui K, Xu L, Li X, Hu X, Huang L, Deng F, Chi Y (2021) Fatigue life analysis of polypropylene fiber reinforced concrete under axial constant-amplitude cyclic compression. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.128610

    Article  Google Scholar 

  16. Gaedicke C, Roesler J, Shah S (2009) Fatigue crack growth prediction in concrete slabs. Int J Fatigue 31:1309–1317. https://doi.org/10.1016/j.ijfatigue.2009.02.040

    Article  Google Scholar 

  17. CEB-FIB (2010) The International Federation for Structural Concrete. FIB Model Code for Concrete Strucures

  18. Cachim P (1998) Experimental and numerical analysis of the behavior of structural concrete under fatigue loading with application to concrete pavements. Ph.D. thesis, Faculty of Engineering, University of Porto

  19. Naaman A, Hammoud H (1998) Fatigue characteristics of high performance fiber-reinforced concrete. Cemen. Concr. Compos. 20:353–363. https://doi.org/10.1016/S0958-9465(98)00004-3

    Article  Google Scholar 

  20. Banjara N, Ramanjaneyulu K (2018) Experimental investigations and numerical simulations on the flexure fatigue behavior of plain and fiber-reinforced concrete. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002351

    Article  Google Scholar 

  21. Chang D, Chai W (1995) Flexural fracture and fatigue behavior of steel-fiber-reinforced concrete structures. Nucl Eng Des 156:201–207. https://doi.org/10.1016/0029-5493(94)00946-V

    Article  Google Scholar 

  22. Lee M, Barr B (2004) An overview of the fatigue behavior of plain and fibre reinforced concrete. Cem Concr Compos 26:299–305. https://doi.org/10.1016/S0958-9465(02)00139-7

    Article  Google Scholar 

  23. Stephen S, Gettu R (2020) Fatigue fracture of fibre reinforced concrete in flexure. Mater Struct 53:56. https://doi.org/10.1617/s11527-020-01488-7

    Article  Google Scholar 

  24. Germano F, Tiberti G, Plizzari G (2016) Post-peak fatigue performance of steel fiber reinforced concrete under flexure. Mater Struct 49:4229–4245. https://doi.org/10.1617/s11527-015-0783-3

    Article  Google Scholar 

  25. de la Carlesso D, Fuente A, Cavalaro S (2019) Fatigue of cracked high performance fiber reinforced concrete subjected to bending. Constr Build Mater 220:444–455. https://doi.org/10.1016/j.conbuildmat.2019.06.038

    Article  Google Scholar 

  26. Monteiro V, Cardoso D, Silva F (2023) A novel methodology for estimating damage evolution and energy dissipation for steel fiber reinforced concrete under flexural fatigue loading. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2022.107244

    Article  Google Scholar 

  27. Hsu T (1981) Fatigue of plain concrete. ACI J 78:292–304

    Google Scholar 

  28. Carlesso D, de la Cavalaro S, Fuente A (2021) Flexural fatigue of pre-cracked plastic fibre reinforced concrete: experimental study and numerical modeling. Cement Concr Compos. https://doi.org/10.1016/j.cemconcomp.2020.103850

    Article  Google Scholar 

  29. Singh S, Kaushik S (2003) Fatigue strength of steel fibre reinforced concrete in flexure. Cement Concr Compos 25:779–786. https://doi.org/10.1016/S0958-9465(02)00102-6

    Article  Google Scholar 

  30. Singh S, Singh B, Kaushik S (2005) Probability of fatigue failure of steel fibrous concrete. Mag Concr Res 57:65–72. https://doi.org/10.1680/macr.2005.57.2.65

    Article  Google Scholar 

  31. Singh S, Sharma U (2007) Flexural fatigue strength of steel fibrous concrete beams. Adv Struct Eng 10:197–207. https://doi.org/10.1260/136943307780429761

    Article  Google Scholar 

  32. Medeiros A, Zhang X, Ruiz G, Yu R, Velasco M (2015) Effect of the loading frequency on the compressive fatigue behavior of plain and fiber reinforced concrete. Int J Fatigue 70:342–350. https://doi.org/10.1016/j.ijfatigue.2014.08.005

    Article  Google Scholar 

  33. Saucedo L, Yu R, Medeiros A, Zhang X, Ruiz G (2013) A probabilistic fatigue model on the initial distribution to consider frequency effect in plain and fiber reinforced concrete. Int J Fatigue 48:308–318. https://doi.org/10.1016/j.ijfatigue.2012.11.013

    Article  Google Scholar 

  34. Baktheer A, Becks H (2021) Fracture mechanics based interpretation of the load sequence effect in the flexural fatigue behavior of concrete using digital image correlation. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.124817

    Article  Google Scholar 

  35. Baktheer A, Ahuilar M, Chudoba R (2021) Microplane fatigue model MS1 for plain concrete under compression with damage evolution driven by cumulative inelastic shear strain. Int J Plast. https://doi.org/10.1016/j.ijplas.2021.102950

    Article  Google Scholar 

  36. Castillo E, Canteli A (2009) A unified statistical methodology for modeling fatigue damage, 1st edn. Springer

    Google Scholar 

  37. Blasón S, Canteli A, Poveda E, Ruiz G, Yu R, Castillo E (2022) Damage evolution and probabilistic strain-lifetime assessment of plain and fiber-reinforced concrete under compressive fatigue loading: dual and integral phenomenological model. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2022.106739

    Article  Google Scholar 

  38. Ortega J, Ruiz G, Poveda E, González D, Tarifa M, Zhang X, Yu R, de la Vicente M, Rosa A, Garijo L (2022) Size effect on the compressive fatigue of fibre-reinforced concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.126238

    Article  Google Scholar 

  39. Ortega J, Ruiz G, Yu R, Afanador-García N, Tarifa M, Poveda E, Zhang XE (2018) Number of tests and corresponding error in concrete in fatigue. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2018.06.022

    Article  Google Scholar 

  40. González D, Mena A, Ruiz G, Ortega J, Poveda E, de la Mínguez J, Rosa A, Vicente M (2023) Size effect of steel fiber-reinforced concrete cylinders under compressive fatigue loading: influence of the mesostructure. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2022.107353

    Article  Google Scholar 

  41. di Prisco M, Colombo M, Dozio D (2013) Fibre-reinforced concrete in fib model code 2010: principles, models and test validation. Struct Concr 14:342–361. https://doi.org/10.1002/suco.201300021

    Article  Google Scholar 

  42. van Zijl G, Mbewe P (2013) Flexural modelling of steel fibre-reinforced concrete beams with and without steel bars. Eng Struct 53:52–62. https://doi.org/10.1016/j.engstruct.2013.03.036

    Article  Google Scholar 

  43. Turk K, Bassurucu M (2022) An investigation on the effect of hybrid fiber reinforced on the flexural behavior of RC beams having different lad-spliced lengths. Struct Concr. https://doi.org/10.1002/suco.202200106Structural

    Article  Google Scholar 

  44. Mahmood S (2018) Flexural performance of steel fibre reinforced concrete beams designed for moment redistribution. Eng Struct 177:695–706. https://doi.org/10.1016/j.engstruct.2018.10.007

    Article  Google Scholar 

  45. Qasim M, Lee C, Zhang Y (2023) Flexural strengthening of reinforced concrete beams using hybrid fibre reinforced engineered cementitious composite. Eng Struct. https://doi.org/10.1016/j.engstruct.2023.115992

    Article  Google Scholar 

  46. Monteiro V, Lima L, Silva F (2018) On the mechanical behavior of polypropylene, steel and hybrid fiber reinforced self-consolidating concrete. Constr Build Mater 10:280–291. https://doi.org/10.1016/j.conbuildmat.2018.08.103

    Article  Google Scholar 

  47. Cardoso D, Pereira G, Silva F, Silva J, Pereira E (2019) Influence of steel fibers on the flexural behaviour of RC beams with low reinforcing ratios: Analytical and experimental investigation. Compos Struct. https://doi.org/10.1016/j.conbuildmat.2018.08.099

    Article  Google Scholar 

  48. Mobasher B, Yao Y, Soranakom C (2015) Analytical solutions for flexural design of hybrid steel fiber reinforced concrete beams. Eng Struct 100:164–177. https://doi.org/10.1016/j.engstruct.2015.06.006

    Article  Google Scholar 

  49. Belleti B, Cerioni R, Meda A, Plizzari G (2008) Design aspects on steel fiber-reinforced concrete pavements. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:9(599).4

    Article  Google Scholar 

  50. Yao Y, Aswani K, Wang X, Mobasher B (2018) Analytical displacement solutions for statically determinate beams based on a trilinear moment-curvature model. Struct Concr 19:1619–1632. https://doi.org/10.1002/suco.201700150

    Article  Google Scholar 

  51. Bishara A (1982) Some aspects of dynamic response of rectangular reinforced concrete beams. ACI Special Publ 75:235–252

    Google Scholar 

  52. Zanuy C, Fuente P, Albajar L (2007) Effect of fatigue degradation of the compression zone of concrete in reinforced concrete beams. Eng Struct 29:2908–2920. https://doi.org/10.1016/j.engstruct.2007.01.030

    Article  Google Scholar 

  53. Mirzazadeh M, Noel M, Green M (2017) Fatigue behavior of reinforced concrete beam with temperature differentials at room and low temperature. J Struct Eng. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001753

    Article  Google Scholar 

  54. Bresler B, Bertero V (1968) Behavior of reinforced concrete under repeated load. J Struct Div 94:1567

    Article  Google Scholar 

  55. Papakonstantinou C, Petrou M, Harries K (2001) Fatigue behavior of RC beams strengthened with GFRP sheets. J Compos Constr 5:246–253. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(246)

    Article  Google Scholar 

  56. Gao D, Gu Z, Tang J, Zhang C (2020) Fatigue performance and stress range modeling of SFRC beams with high-strength steel bars. Eng Struct. https://doi.org/10.1016/j.engstruct.2020.110706

    Article  Google Scholar 

  57. Parvez A, Foster S (2015) Fatigue behavior of steel-fiber-reinforced concrete beams. J Structral Eng. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001074

    Article  Google Scholar 

  58. Miao Y, Niu D, Cheng N (2019) Durability of concrete under the combined action of carbonization and fatigue loading of vehicles. Sci Adv Mater 11:1781–1787. https://doi.org/10.1166/sam.2019.3706

    Article  Google Scholar 

  59. Yang T, Guan B, Liu G, Lia Y (2019) Modeling of chloride ion diffusion in concrete under fatigue loading. KSCE J Civ Eng 23:287–294. https://doi.org/10.1007/s12205-018-0403-1

    Article  Google Scholar 

  60. Ren Y, Huang Q, Liu Q, Liu X (2015) Chloride ion diffusion of structural concrete under the coupled effect of bending fatigue load and chloride. Mater Res Innov. https://doi.org/10.1179/1432891715Z.0000000001400

    Article  Google Scholar 

  61. Liu D, Wang C, Libreros J, Guo T, Cao J, Tu Y, Elfgren L, Sas G (2023) A review of concrete properties under the combined effect of fatigue and corrosion from a material perspective. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2023.130489

    Article  Google Scholar 

  62. ASTM C595 (2008) Standard specification for blended hydraulic cements. ASTM International

  63. ASTM C39 (2021) Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International

  64. De Larrard F (1999) Concrete mixture proportioning: a scientific approach. London: E&FN SPON

  65. Rambo D, Silva F, Filho R (2014) Effect of steel fiber hybridization on the fracture behavior of self-consolidating concretes. Cement Concrete Compos. https://doi.org/10.1016/j.cemconcomp.2014.02.004

    Article  Google Scholar 

  66. ASTM C1611 (2005) Standard test method for slump flow of self-consolidating concrete. ASTM International

  67. EN 14651 (2005) Test method for metallic concrete: measuring the flexural tensile strength (limit of proportionality (LOP), residual). United Kingdom: European Committee for Standardization

  68. NBR 6892. Materiais metálicos: ensaio de tração à temperatura ambiente. Associação Brasileira de Normas Técnicas (2002)

  69. Bruck H, McNeill S, Sutton M, Peters W (1989) Digital image correlation using Newton-Raphson method of partial differential correction. Exp Mech 29:261–267. https://doi.org/10.1007/BF02321405

    Article  Google Scholar 

  70. Grimaldi A, Olivito R, Rinaldi Z (2004) Behaviour of R.C. beams reinforced With FRC material: analytical: experimental evaluation. In: 6th International RILEM symposium on fibre-reinforced concretes, pp. 1035–1044

  71. Dancygier A, Berkover E (2016) Cracking localization and reduced ductility in fiber-reinfroced concrete beams with low reinforcement ratios. Eng Struct 111:411–424. https://doi.org/10.1016/j.engstruct.2015.11.046

    Article  Google Scholar 

  72. Bhosale A, Prakash S (2020) Crack propagation analysis of synthetic vs. steel vs. hybrid fibre-reinforced concrete using beams using digital image correlation technique. Int J Concr Struct Mater 14:57. https://doi.org/10.1186/s40069-020-00427-8

    Article  Google Scholar 

  73. Zhang J, Li V (2004) Simulation of crack propagation in fiber-reinforced concrete by fracture mechanics. Cem Concr Res 34:333–339. https://doi.org/10.1016/j.cemconres.2003.08.015

    Article  Google Scholar 

  74. Jenq Y, Shah S (1986) Crack propagation in fiber-reinforced concrete. J Struct Eng. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:1(19)

    Article  Google Scholar 

  75. Yao Y, Mobasher B, Wang J, Xu Q (2020) Analytical approach for the design of flexural elements made of reinforced ultra-high performance concrete. Struct Concr 22:298–317. https://doi.org/10.1002/suco.201900404

    Article  Google Scholar 

  76. Volpatti G, Martínez J, Diaz J, Zampini D (2022) Advanced closed-form moment-curvature formulation for fiber-reinforced concrete members. Compos Struct. https://doi.org/10.1016/j.compstruct.2021.114755

    Article  Google Scholar 

  77. Smedt M, Vrijdaghs R, Steen C, Versrynge E, Vandewalle L (2020) Damage analysis in steel fibre reinforced concrete under monotonic and cyclic bending by means of acoustic emission monitoring. Cement Concr Compos. https://doi.org/10.1016/j.cemconcomp.2020.103765

    Article  Google Scholar 

Download references

Acknowledgements

All testing was conducted at the Laboratory of Structures and Materials of the Pontifical Catholic University of Rio de Janeiro. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance code 001 and by Brazilian funding agencies FAPERJ and CNPq. This research is part of the cooperation project Aneel PD-0394-1905/2019 (Furnas—PUC-Rio) named “Determinação de parâmetros para Ensaios Mecânicos do Concreto Reforçado com Fibras (CRF) sob Condições Extremas de Carregamento em Empreendimentos de Geração Hidrelétrica e Eólica”. For more details about the project, please assess www.fadiga.civ.puc-rio.br.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Moreira de Alencar Monteiro.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, V.M.d., Cardoso, D.C.T. & de Andrade Silva, F. On the mechanical degradation of R/SFRC beams under flexural fatigue loading. Mater Struct 57, 87 (2024). https://doi.org/10.1617/s11527-024-02371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-024-02371-5

Keywords

Navigation