Skip to main content
Log in

Influence of hydroxypropylmethylcellulose (HPMC) on thermal and mechanical performance of cementitious rendering mortars

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The application of insulating materials in the construction industry is an intelligent strategy that promotes energy efficiency by reducing energy consumption through enhanced thermal retention in indoor spaces, resulting in improved comfort and resource savings. The focus on enhancing thermal performance has led to the utilization of techniques involving cementitious materials and additives to impart insulation properties. In this study, we investigate the influence of Hydroxypropyl Methyl Cellulose (HPMC) on the thermal and mechanical properties of rendering mortars. Four different concentrations of HPMC (0.015, 0.030, 0.045, and 0.060%) were analyzed and compared with a reference mixture. Various tests were conducted to determine the fresh and hardened state properties of the mortars, including consistency index, bulk density, water loss through evaporation, compressive strength, flexural tensile strength, adhesive flexural strength, water absorption by immersion, and modulus of elasticity. The thermal performance was evaluated using a prototype that simulated heat incidence on a cementitious panel. The results indicate that the incorporation of HPMC allows for the production of lighter materials with a weight reduction of 11.76% due to the high porosity induced by the additive. This high void content contributes to thermal insulation by reducing the material’s conductivity by up to 30% while maintaining a fixed heat flux of approximately 49 W when subjected to the same heat flux. The resistance to heat transfer through the panel varies with the addition of HPMC, with the highest incorporation of the additive resulting in a 32.6% increase in thermal resistance compared to the reference mixture. These findings highlight the potential of HPMC as an effective additive for improving the thermal and mechanical performance of rendering mortars, thereby contributing to enhanced energy efficiency in building construction. The results have implications for the development of sustainable building materials that optimize thermal insulation and reduce energy consumption, thereby promoting environmentally friendly practices in the construction industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. ANSI/ASHRAE STANDARD 55 (2017) Thermal environmental conditions for human occupancy. American society of heating, refrigerating and air-conditioning engineers.

  2. ABNT NBR ISO 7730 (2019) Ergonomia—Condições ambientais de conforto térmico-Determinação dos índices PMV e PPD e critérios de conforto térmico. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

  3. ABNT NBR 15575–1 (2021) Edifícios habitacionais: desempenho: parte 1: requisitos gerais. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

  4. Fontes, A. É. M. de S., Cabral, K. C., Souza, W. R. M. de Martinelli, A. E., & Fontes, K. E. S (2022) Análise mecânica e térmica de argamassas de revestimento com substituição parcial do agregado por argila expandida. Ambiente Construído, 299–311.

  5. IEA (2013) Technology roadmap: energy efficient building envelopes. International Energy Agency, Paris

    Google Scholar 

  6. Akeiber H, Nejat P, Majid MZA, Wahid MA, Jomehzadeh F, ZeynaliFamileh I, Calautit JK, Hughes BR, Zaki SA (2016) A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew Sustain Energy Rev 60:1470–1497

    Article  Google Scholar 

  7. Quiñones-Bolaños E, Gómez-Oviedo M, Mouthon-Bello J, Sierra-Vitola L, Berardi U, Bustillo-Lecompte C (2021) Potential use of coconut fibre modified mortars to enhance thermal comfort in low-income housing. J Environ Manag 277(111503):111503

    Article  Google Scholar 

  8. Wang J, Du B (2020) Experimental studies of thermal and acoustic properties of recycled aggregate crumb rubber concrete. J Build Eng 32(101836):101836

    Article  Google Scholar 

  9. Cintra CLD, Paiva AEM, Baldo JB (2014) Argamassas de revestimento para alvenaria contendo vermiculita expandida e agregados de borracha reciclada de pneus-Propriedades relevantes. Cerâmica 60(353):69–76

    Article  CAS  Google Scholar 

  10. Zhang G, He R, Lu X, Wang P (2018) Early hydration of calcium sulfoaluminate cement in the presence of hydroxyethyl methyl cellulose. J Therm Anal Calorim 134(3):1429–1438

    Article  CAS  Google Scholar 

  11. Silva BA, Ferreira Pinto AP, Gomes A, Candeias A (2020) Impact of a viscosity-modifying admixture on the properties of lime mortars. J Build Eng 31(101132):101132

    Article  Google Scholar 

  12. Ma B, Peng Y, Tan H, Jian S, Zhi Z, Guo Y, Qi H, Zhang T, He X (2018) Effect of hydroxypropyl-methyl cellulose ether on rheology of cement paste plasticized by polycarboxylate superplasticizer. Constr Build Mater 160:341–350

    Article  CAS  Google Scholar 

  13. Oliveira AL, Corrêa BP, Ribeiro IFR, Souza RA, Calçada LML (2015) Influência do uso de aditivo retentor de água à base de éter de celulose nas propriedades das argamassas de assentamento em alvenaria estrutural de blocos de concreto. Ambiente Construído 15(3):57–69

    Article  Google Scholar 

  14. Nascimento, R. F. do, Cabral, K. C., & Lucena, L. F. L (2022) Efeito da incorporação de Hidroxipropilmetilcelulose nas propriedades do estado fresco e endurecido de argamassas leves a base de vermiculita expandida. Revista Principia - Divulgação Científica e Tecnológica do IFPB.

  15. Hwang H-Y, Kwon Y-H, Hong S-G, Kang S-H (2022) Comparative study of effects of natural organic additives and cellulose ether on properties of lime-clay mortars. J Build Eng 48(103972):103972

    Article  Google Scholar 

  16. ABNT NBR NM 248 (2003) Agregados–Determinação da composição granulométrica. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

  17. ABNT NBR NM 45 (2006) Agregados–Determinação de massa unitária e do volume de vazios. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

  18. ABNT NBR NM 52 (2009) Agregado miúdo–Determinação de massa específica e massa específica aparente. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

  19. Chen N, Wang P, Zhao L, Zhang G (2020) Water retention mechanism of HPMC in cement mortar. Materials 13(13):2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. ABNT NBR 13276 (2005) Argamassa para assentamento e revestimentos de paredes e tetos – Preparo da mistura e determinação do índice de consistência. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

  21. ABNT NBR 13278 (2005) Argamassa para assentamento e revestimento de paredes e tetos - Determinação da densidade de massa e do teor de ar incorporado. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

  22. Pereira, C. H. de A. F (2007) Contribuição ao estudo da fissuração, da retração e do mecanismo de descolamento do revestimento à base de argamassa. Universidade de Brasília.

  23. ABNT NBR 13279 (2005) Argamassa para assentamento e revestimento de paredes e tetos – Determinação da resistência à tração na flexão e à compressão. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

  24. ABNT NBR 13528–1 (2019) Revestimento de paredes de argamassas inorgânicas - Determinação da resistência de aderência à tração. Parte 1: Requisitos gerais. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

  25. ABNT NBR 13528–2 (2019) Revestimento de paredes de argamassas inorgânicas - Determinação da resistência de aderência à tração. Parte 2: Aderência ao substrato. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

  26. ABNT NBR 13280 (2005) Argamassa para assentamento e revestimento de paredes e tetos - Determinação da densidade de massa aparente no estado endurecido. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

  27. ABNT NBR 15630 (2008) Argamassa para assentamento e revestimento de paredes e tetos - Determinação do módulo de elasticidade dinâmico através da propagação de onda ultra-sônica. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

  28. ABNT NBR 9778 (2005) Argamassa e concreto endurecidos - Determinação da absorção de água, índice de vazios e massa específica. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

  29. Knapen E, Van Gemert D (2009) Cement hydration and microstructure formation in the presence of water-soluble polymers. Cem Concr Res 39(1):6–13

    Article  CAS  Google Scholar 

  30. Pourchez J, Ruot B, Debayle J, Pourchez E, Grosseau P (2010) Some aspects of cellulose ethers influence on water transport and porous structure of cement-based materials. Cem Concr Res 40(2):242–252

    Article  CAS  Google Scholar 

  31. ChavesFigueiredo S, Çopuroğlu O, Schlangen E (2019) Effect of viscosity modifier admixture on Portland cement paste hydration and microstructure. Constr Build Mater 212:818–840

    Article  Google Scholar 

  32. Vyšvařil, M., & Bayer, P (2019) Cellulose ethers as water-retaining agents in natural hydraulic lime mortars. In: The 13th international scientific conference “modern building materials, structures and techniques. Vilnius Gediminas Technical University.

  33. Wyrzykowski M, Kiesewetter R, Kaufmann J, Baumann R, Lura P (2014) Pore structure of mortars with cellulose ether additions–Mercury intrusion porosimetry study. Cement Concr Compos 53:25–34

    Article  CAS  Google Scholar 

  34. Gu X, Wang S, Liu J, Wang H, Xu X, Wang Q, Zhu Z (2023) Effect of hydroxypropyl methyl cellulose (HPMC) as foam stabilizer on the workability and pore structure of iron tailings sand autoclaved aerated concrete. Constr Build Mater 376:130979

    Article  CAS  Google Scholar 

Download references

Acknowledgements

To the heat transfer laboratory and LABCIM, we express our gratitude.

Funding

CAPES—Coordination for the Improvement of Higher Education Personnel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isla Licely Rodrigues Batista.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, I.L.R., Cabral, K.C., de Souza, W.R.M. et al. Influence of hydroxypropylmethylcellulose (HPMC) on thermal and mechanical performance of cementitious rendering mortars. Mater Struct 57, 25 (2024). https://doi.org/10.1617/s11527-024-02297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-024-02297-y

Keywords

Navigation