Skip to main content
Log in

Raman identification of CaCO3 polymorphs in concrete prepared with carbonated recycled concrete aggregates

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The urge to preserve natural resources, to reduce cement production CO2 emissions and to recycle concrete waste conducted to the French national program FastCarb. It is aimed at using recycled concrete aggregates (RCAs), once carbonated with CO2 coming from cement production sites, as a replacement for natural aggregates. The carbonation step serves to reduce the porosity of the old cement paste and to improve future concrete properties. Two different carbonation processes (rolling drum (P1), fluidized bed (P2)) were tested and the resulting RCAs were mixed in different weight proportions with natural aggregates to elaborate new concretes. Raman investigations were then conducted on some sections to analyze the carbonated phases and their spatial distribution. Results indicated a difference in polymorphs distributions. Process P1 seems to generate more vaterite than process P2, which mainly generates calcite and aragonite. They also allowed to appreciate the thickness of the interface between the old and the new cement pastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. U.S. Geological Survey (2020) Mineral commodity summaries 2020: U.S. Geological Survey. https://doi.org/10.3133/mcs2020

  2. IPCC report AR6 WGI (2021) Chapter 5: Global carbon and other biogeochemical cycles and feedbacks

  3. Shagñay S, Bautista A, Velasco F, Torres-Carrasco M (2022) Carbonation of alkali-activated and hybrid mortars manufactured from slag: confocal Raman microscopy study and impact on wear performance. Boletín de la Sociedad Española de Cerámica y Vidrio. https://doi.org/10.1016/j.bsecv.2022.07.003. (In press)

    Article  Google Scholar 

  4. Ben FA, Idir R (2017) Concrete based on recycled aggregates–recycling and environmental analysis: a case study of Paris’ region. Constr Build Mater 157:952–964

    Article  Google Scholar 

  5. Sedran T (2019) Chapter 15: Adaptation of existing methods to incorporate recycled aggregates. In: de Larrard F, Colina H (eds) Concrete recycling research and practice, 1st edn. CRC Press, p 636. ISBN 9781138724723

  6. De Larrard F, Colina H (2019) Concrete recycling: research and practice. CRC Press, Boca Raton. https://doi.org/10.1201/9781351052825

    Book  Google Scholar 

  7. Zheng Lu, Tan Q, Lin J, Wang D (2022) Properties investigation of recycled aggregates and concrete modified by accelerated carbonation through increased temperature. Constr Build Mater 341:127813. https://doi.org/10.1016/j.conbuildmat.2022.127813

    Article  CAS  Google Scholar 

  8. Yunhui Pu, Li L, Shi X, Wang Q, Abomohra A (2022) Improving recycled concrete aggregates using flue gas based on multicyclic accelerated carbonation: performance and mechanism. Constr Build Mater 361:129623. https://doi.org/10.1016/j.conbuildmat.2022.129623

    Article  CAS  Google Scholar 

  9. Feng C, Cui B, Guo H, Zhang W, Zhu J (2023) Study on the effect of reinforced recycled aggregates on the performance of recycled concrete–synergistic effect of cement slurry-carbonation. J Build Eng 64:105700. https://doi.org/10.1016/j.jobe.2022.105700

    Article  Google Scholar 

  10. Liu H, Zhu X, Zhu P, Chen C, Wang X, Yang W, Zong M (2022) Carbonation treatment to repair the damage of repeatedly recycled coarse aggregate from recycled concrete suffering from coupling action of high stress and freeze-thaw cycles. Constr Build Mater 349:128688. https://doi.org/10.1016/j.conbuildmat.2022.128688

    Article  CAS  Google Scholar 

  11. Etxeberria M, Marí AR, Vázquez E (2007) Recycled aggregate concrete as structural material. Mater Struct 40(5):529–541

    Article  Google Scholar 

  12. Silva RV, De Brito J, Dhir RK (2015) The influence of the use of recycled aggregates on the compressive strength of concrete: a review. Eur J Environ Civ Eng 19:25–849. https://doi.org/10.1080/19648189.2014.974831

    Article  Google Scholar 

  13. Omary S, Ghorbel E, Wardeh G (2016) Relationships between recycled concrete aggregates characteristics and recycled aggregates concretes properties. Construct Build Mater 108:163–174. https://doi.org/10.1016/j.conbuildmat.2016.01.042

    Article  Google Scholar 

  14. Bai G, Zhu C, Liu C, Liu B (2020) An evaluation of the recycled aggregate characteristics and the recycled aggregate concrete mechanical properties. Constr Build Mater 240:117978

    Article  Google Scholar 

  15. Tošić N, Torrenti JM, Sedran T, Ignjatović I (2021) Toward a codified design of recycled aggregate concrete structures: Background for the new fib Model Code 2020 and Eurocode 2. Struct Concr 22(5):2916–2938

    Article  Google Scholar 

  16. Wang B, Yan L, Fu Q, Kasal B (2021) A comprehensive review on recycled aggregate and recycled aggregate concrete. Resour Conserv Recycl 171:105565

    Article  CAS  Google Scholar 

  17. Damrongwiriyanupap N, Wachum A, Khansamrit K, Detphan S, Hanjtsuwan S, Phoo-ngernkham T, Sukontasukul P, Li L, Chindaprasirt P (2022) Improvement of recycled concrete aggregate using alkali-activated binder treatment. Mater Struct 55:11. https://doi.org/10.1617/s11527-021-01836-1

    Article  CAS  Google Scholar 

  18. Zhan B, Poon CS, Liu Q, Kou SC, Shi C (2014) Experimental study on CO2 curing for enhancement of recycled aggregate properties. Constr Build Mater 67:3–7

    Article  Google Scholar 

  19. Pu Y, Li L, Wang Q, Shi X, Luan C, Zhang G, Fu L, El-Fatah AA (2021) Accelerated carbonation technology for enhanced treatment of recycled concrete aggregates: a state-of-the-art review. Constr Build Mater 282:122671

    Article  CAS  Google Scholar 

  20. Zajac M, Skibsted J, Skocek J, Durdzinski P, Bullerjahn F, Ben HM (2020) Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation. Cem Concr Res 130:105990. https://doi.org/10.1016/j.cemconres.2020.105990

    Article  CAS  Google Scholar 

  21. Liang L, Wu M (2022) An overview of utilizing CO2 for accelerated carbonation treatment in the concrete industry. J CO2 Util 60:102000. https://doi.org/10.1016/j.jcou.2022.102000

  22. Xiao J, Zhang H, Tang Y, Deng Q, Wang D, Poon CS (2022) Fully utilizing carbonated recycled aggregates in concrete: strength, drying shrinkage and carbon emissions analysis. J Clean Prod 377:134520. https://doi.org/10.1016/j.jclepro.2022.134520

    Article  CAS  Google Scholar 

  23. Winnefeld F, Leemann A, German A, Lothenbach B (2022) CO2 storage in cement and concrete by mineral carbonation. Curr Opin Green Sustain Chem. https://doi.org/10.1016/j.cogsc.2022.100672

    Article  Google Scholar 

  24. Skocek J, Zajac M, Ben HM (2020) Carbon capture and utilization by mineralization of cement pastes derived from recycled concrete. Sci Rep 10(1):1–12. https://doi.org/10.1038/s41598-020-62503-z

    Article  CAS  Google Scholar 

  25. Tam VW, Butera A, Le KN, Li W (2020) Utilising CO2 technologies for recycled aggregate concrete: a critical review. Constr Build Mater 250:118903. https://doi.org/10.1016/j.conbuildmat.2020.118903

    Article  CAS  Google Scholar 

  26. Sereng M, Djerbi A, Metalssi OO, Dangla P, Torrenti J-M (2021) Improvement of recycled aggregates properties by means of CO2 uptake. Appl Sci 11:6571. https://doi.org/10.3390/app11146571

    Article  CAS  Google Scholar 

  27. Torrenti JM, Amiri O, Barnes-Davin L, Bougrain F, Braymand S, Cazacliu B, Colin J, Cudeville A, Dangla P, Djerbi A, Doutreleau M (2022) The FastCarb project: taking advantage of the accelerated carbonation of recycled concrete aggregates. Case Stud Constr Mater 17:e01349. https://doi.org/10.1016/j.cscm.2022.e01349

    Article  Google Scholar 

  28. Mi R, Pan G (2022) Inhomogeneities of carbonation depth distributions in recycled aggregate concretes: a visualisation and quantification study. Constr Build Mater 330:127300. https://doi.org/10.1016/j.conbuildmat.2022.127300

    Article  CAS  Google Scholar 

  29. Mi R, Liew KM, Pan G (2022) New insights into diffusion and reaction of CO2 gas in recycled aggregate concrete. Cement Concr Compos 129:104486. https://doi.org/10.1016/j.cemconcomp.2022.104486

    Article  CAS  Google Scholar 

  30. Izoret L, Pernin T, Potier JM, Torrenti JM (2023) Impact of industrial application of fast carbonation of recycled concrete aggregates. Appl Sci 13(2):849. https://doi.org/10.3390/app13020849

    Article  CAS  Google Scholar 

  31. Cole WF, Kroone B (1959) Carbonate minerals in hydrated Portland cement. Nature 184:BA57

    Article  Google Scholar 

  32. Sledgers PA, Rouxhet PG (1976) Carbonation of the hydration products of tricalcium silicate. Cem Concr Res 6:381–388

    Article  Google Scholar 

  33. Thiery M, Dangla P, Belin P, Habert G, Roussel N (2013) Carbonation kinetics of a bed of recycled concrete aggregates: a laboratory study on model materials. Cem Concr Res 46:50–65. https://doi.org/10.1016/j.cemconres.2013.01.005

    Article  CAS  Google Scholar 

  34. Auroy M, Poyet S, Le Bescop P, Torrenti JM, Charpentier T, Moskura M, Bourbon X (2018) Comparison between natural and accelerated carbonation (3% CO2): impact on mineralogy, microstructure, water retention and cracking. Cem Concr Res 109:64–80. https://doi.org/10.1016/j.cemconres.2018.04.012

    Article  CAS  Google Scholar 

  35. Tai CY, Chen F-B (1998) Polymorphism of CaCO3, precipitated in a constant-composition environment. AIChE J 44:1790–1798. https://doi.org/10.1002/aic.690440810

    Article  CAS  ADS  Google Scholar 

  36. Drouet E, Poyet S, Le Bescop P, Torrenti JM, Bourbon X (2019) Carbonation of hardened cement pastes: influence of temperature. Cem Concr Res 115:445–459. https://doi.org/10.1016/j.cemconres.2018.09.019

    Article  CAS  Google Scholar 

  37. Morandeau A, Thiery M, Dangla P (2014) Investigation of the carbonation mechanism of CH and CSH in terms of kinetics, microstructure changes and moisture properties. Cem Concr Res 56:153–170. https://doi.org/10.1016/j.cemconres.2013.11.015

    Article  CAS  Google Scholar 

  38. Kaddah F, Ranaivomanana H, Amiri O, Rozière E (2022) Accelerated carbonation of recycled concrete aggregates: investigation on the microstructure and transport properties at cement paste and mortar scales. J CO2 Util 57:101885

  39. Haque F, Santos RM, Chiang YW (2019) Using nondestructive techniques in mineral carbonation for understanding reaction fundamentals. Powder Technol 357:134–148. https://doi.org/10.1016/j.jcou.2022.101885

    Article  CAS  Google Scholar 

  40. Bensted J (1976) Uses of Raman spectroscopy in cement chemistry. J Am Ceramic Soc 59(3–4):140–143

    Article  CAS  Google Scholar 

  41. Bensted J (1977) Raman spectral studies of carbonation phenomena. Cem Concr Res 7(2):161–164

    Article  CAS  Google Scholar 

  42. Kontoyannis CG, Vagenas NV (2000) Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst 125:251–255. https://doi.org/10.1039/A908609I

    Article  CAS  ADS  Google Scholar 

  43. Martinez-Ramirez S, Sanchez-Cortes S, Garcia-Ramos JV, Domingo C, Fortes C, Blanco-Varela MT (2003) Micro-Raman spectroscopy applied to depth profiles of carbonates formed in lime mortar. Cem Concr Res 33:2063–2068. https://doi.org/10.1016/S0008-8846(03)00227-8

    Article  CAS  Google Scholar 

  44. Renaudin G, Segni R, Mentel D, Nedelec J-M, Leroux F, Taviot-Gueho C (2007) A Raman study of the sulfated cement hydrates: ettringite and monosulfoaluminate. J Adv Concr Technol 5(3):299–312. https://doi.org/10.3151/jact.5.299

    Article  CAS  Google Scholar 

  45. Corvisier J, Brunet F, Fabbri A, Bernard S, Findling N, Rimmelé G, Barlet-Gouédard V, Beyssac O, Goffé B (2010) Raman mapping and numerical simulation of calcium carbonates distribution in experimentally carbonated Portland cement cores. Eur J Mineral 22(1):63–74. https://doi.org/10.1127/0935-1221/2010/0022-1977

    Article  CAS  Google Scholar 

  46. Ševčik R, Mácrová P, Sotiriadis K, Pérez-Estébanez M, Viani A, Šašek P (2016) Micro-Raman spectroscopy investigation of the carbonation reaction in a lime paste produced with a traditional technology. J Raman Spectrosc 47:1452–1457. https://doi.org/10.1002/jrs.4929

    Article  CAS  ADS  Google Scholar 

  47. Plank J, Zhang-Preße M, Ivleva NP, Niessner R (2016) Stability of single phase C3A hydrates against pressurized CO2. Constr Build Mater 122:426–434. https://doi.org/10.1016/j.conbuildmat.2016.06.042

    Article  CAS  Google Scholar 

  48. Marchetti M, Mechling J-M, Diliberto C, Brahim M-N, Trauchessec R, Lecomte A, Bourson P (2021) Portable quantitative confocal Raman spectroscopy: non-destructive approach of the carbonation chemistry and kinetics. Cem Concr Res 139:106280. https://doi.org/10.1016/j.cemconres.2021.106554

    Article  CAS  Google Scholar 

  49. Marchetti M, Mechling J-M, Janvier-Badosa S, Offroy M (2023) Benefits of chemometric and Raman spectroscopy applied to the kinetics of setting and early age hydration of cement paste. Appl Spectrosc 77(1):37–52. https://doi.org/10.1177/00037028221135065

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Srivastava S, Garg N (2023) Tracking spatiotemporal evolution of cementitious carbonation via Raman imaging. J Raman Spectrosc 54(4):414–425. https://doi.org/10.1002/jrs.6483

    Article  CAS  ADS  Google Scholar 

  51. Zhang B, Liao W, Ma H, Huang J (2023) In situ monitoring of the hydration of calcium silicate minerals in cement with a remote fiber-optic Raman probe. Cement Concr Compos 142:105214. https://doi.org/10.1016/j.cemconcomp.2023.105214

    Article  CAS  Google Scholar 

  52. Brahim M-N, Mechling J-M, Janvier-Badosa S, Marchetti M (2023) Early stage ettringite and monosulfoaluminate carbonation investigated by in situ Raman spectroscopy coupled with principal component analysis. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2023.105539

    Article  Google Scholar 

  53. Xue Q, Zhang L, Mei K, Wang L, Wang Y, Li X, Cheng X, Liu H (2022) Evolution of structural and mechanical properties of concrete exposed to high concentration CO2. Constr Build Mater 343:128077. https://doi.org/10.1016/j.conbuildmat.2022.128077

    Article  CAS  Google Scholar 

  54. Djerbi A (2018) Effect of recycled coarse aggregate on the new interfacial transition zone concrete. Constr Build Mater 190:1023–1033. https://doi.org/10.1016/j.conbuildmat.2018.09.180

    Article  Google Scholar 

  55. Richardson IG, Skibsted J, Black L, Kirkpatrick RJ (2010) Characterisation of cement hydrate phases by TEM, NMR and Raman spectroscopy. Adv Cem Res 22(4):233–248. https://doi.org/10.1680/adcr.2010.22.4.233

    Article  CAS  Google Scholar 

  56. Martínez-Ramírez S, Fernández-Carrasco L (2012) Carbonation of ternary cement systems. Constr Build Mater 27(1):313–318. https://doi.org/10.1016/j.conbuildmat.2011.07.043

    Article  Google Scholar 

  57. Martínez-Ramírez S, Gutierrez-Contreras R, Husillos-Rodriguez N, Fernández-Carrasco L (2016) In-situ reaction of the very early hydration of C3A-gypsum-sucrose system by Micro-Raman spectroscopy. Cem Concr Compos 73:251–256. https://doi.org/10.1016/j.cemconcomp.2016.07.020

    Article  CAS  Google Scholar 

  58. Mi T, Li Y, Liu W, Li W, Long W, Dong Z, Gong Q, Xing F, Wang Y (2021) Quantitative evaluation of cement paste carbonation using Raman spectroscopy. npj Mater Degrad 5:35. https://doi.org/10.1038/s41529-021-00181-6

    Article  CAS  Google Scholar 

  59. Wehrmeister U, Soldati AL, Jacob DE, Häger T, Hofmeister W (2010) Raman spectroscopy of synthetic, geological and biological vaterite: a Raman spectroscopic study. J Raman Spectrosc 41:193–201. https://doi.org/10.1002/jrs.2438

    Article  CAS  ADS  Google Scholar 

  60. Ševčík R, Mácová P (2018) Localized quantification of anhydrous calcium carbonate polymorphs using micro-Raman spectroscopy. Vib Spectrosc 95:1–6. https://doi.org/10.1016/j.vibspec.2017.12.005

    Article  CAS  Google Scholar 

  61. Kramer K (1988) Chemiometric techniques for quantitative analysis. CRC Press

    Google Scholar 

  62. Jackson JE (2003) A user’s guide to principal components. Wiley

    Google Scholar 

  63. Brereton RG (2003) Chemometrics: data analysis for the laboratory and chemical plant. Wiley

    Book  Google Scholar 

  64. Brereton RG (2007) Applied chemometrics for scientists. Wiley

    Book  Google Scholar 

  65. Ruckebusch C (2016) Data handling in science and technology, resolving spectral mixtures, vol 30. Elsevier

    Google Scholar 

  66. Offroy M, Moreau M, Sobanska S, Milanfar P, Duponchel L (2015) Pushing back the limits of Raman imaging by coupling super-resolution and chemometrics for aerosols characterization. Sci Rep 5:12303. https://doi.org/10.1038/srep1230

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  67. Haouchine M, Biache C, Lorgeoux C, Faure P, Offroy M (2022) Handle matrix rank deficiency, noise, and interferences in 3D emission-excitation matrices: effective truncated singular-value decomposition in chemometrics applied to the analysis of polycyclic aromatic compounds. ACS Omega 7(27):23653–23661. https://doi.org/10.1021/acsomega.2c02256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Windig W, Guilment J (1991) Interactive self-modeling mixture analysis. Anal Chem 63:1425–1432. https://doi.org/10.1021/ac00014a016

    Article  CAS  Google Scholar 

  69. Windig W, Stephenson D (1992) Self-modeling mixture analysis of second-derivative near-infrared spectral data using the SIMPLISMA approach. Anal Chem 64:2735–2742. https://doi.org/10.1021/ac00046a015

    Article  CAS  Google Scholar 

  70. Sánchez FC, Van Den Bogaert B, Rutan S, Massart DL (1996) Multivariate peak purity approaches. Chemom Intell Lab Syst 34:139–171. https://doi.org/10.1016/0169-7439(96)00020-2

    Article  Google Scholar 

  71. Urmos J, Sharma SK, Mackenzie FT (1991) Characterization of some biogenic carbonates with Raman spectroscopy. Am Miner 76:641–646

    CAS  Google Scholar 

  72. Gauldie RW, Sharma SK, Volk E (1997) Micro-Raman spectral study of vaterite and aragonite otoliths of the coho salmon, Oncorhynchus kisutch. Camp Biochem Physiol 118A(3):753–757. https://doi.org/10.1016/S0300-9629(97)00059-5

    Article  CAS  Google Scholar 

  73. Gabrielli C, Jaouhari R, Joiret S, Maurin G (2000) In situ Raman spectroscopy applied to electrochemical scaling. Determination of the structure of vaterite. J Raman Spectrosc 31:497–501. https://doi.org/10.1002/1097-4555(200006)31:6%3c497::AID-JRS563%3e3.0.CO;2-9

    Article  CAS  ADS  Google Scholar 

  74. Garbev K, Stemmermann P, Black L, Breen C, Yarwood J, Gasharova B (2007) Structural features of C–S–H(I) and its carbonation in air—a Raman spectroscopic study. Part I: fresh phases. J Am Soc 90(3):900–907. https://doi.org/10.1111/j.1551-2916.2006.01428.x

    Article  CAS  Google Scholar 

  75. Black L, Breen C, Yarwood J, Garbev K, Stemmermann P, Gasharova B (2007) Structural features of C–S–H(I) and its carbonation in air—a Raman spectroscopic study. Part II: carbonated phases. J Am Soc 90(3):908–917. https://doi.org/10.1111/j.1551-2916.2006.01429.x

    Article  CAS  Google Scholar 

  76. Soldati AL, Jacob DE, Wehrmeister U, Hofmeister W (2008) Structural characterization and chemical composition of aragonite and vaterite in freshwater cultured pearls. Mineral Mag 72(2):579–592. https://doi.org/10.1180/minmag.2008.072.2.579

    Article  CAS  Google Scholar 

  77. Cruz JA, Sánchez-Pastor N, Gigler AM, Fernández-Díaz L (2011) Vaterite stability in the presence of chromate. Spectrosc Lett 44(7–8):495–499. https://doi.org/10.1080/00387010.2011.610408

    Article  CAS  ADS  Google Scholar 

  78. De La Pierre M, Carteret C, Maschio L, André E, Orlando R, Dovesi R (2014) The Raman spectrum of CaCO3 polymorphs calcite and aragonite: a combined experimental and computational study. J Chem Phys 140:164509. https://doi.org/10.1063/1.4871900

    Article  CAS  PubMed  ADS  Google Scholar 

  79. Donnelly FC, Purcell-Milton F, Framont V, Cleary O, Dunne PW, Gun’ko YK (2017) Synthesis of CaCO3 nano- and micro-particles by dry ice carbonation. Chem Commun 53:6657. https://doi.org/10.1039/C7CC01420A

    Article  CAS  Google Scholar 

  80. Yue Y, Wang JJ, Muhammed Basheer PA, Boland JJ, Bai Y (2017) Characterisation of carbonated Portland cement paste with optical fibre excitation Raman spectroscopy. Constr Build Mater 135:369–376. https://doi.org/10.1016/j.conbuildmat.2017.01.008

    Article  CAS  Google Scholar 

  81. Yue Y, Wang JJ, Muhammed Basheer PA, Boland JJ, Bai Y (2018) A Raman spectroscopy based optical fibre system for detecting carbonation profile of cementitious materials. Sens Actuators B Chem 257:635–649. https://doi.org/10.1016/j.snb.2017.10.160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The investigations and results reported in this paper have the support of the French Ministry for the Ecological Transition in the framework of the FastCarb National Project (https://fastcarb.fr/en/home/). Authors would like to thank the other contributors to the this project: Sereng M., Aydin B., Barnes-Davin L., Bessette J., Bertola J., Chalençon F., Bougrain F., Laurenceau S., Pimienta P., Mege R., Braymand S., Roux S., Cazacliu B., Colin J., Cudeville A., Dangla P., Doutreleau M., Feraille A., Gueguen M., Guillot X., Pham P., Ranaivomanana H., Hou Y., Izoret L., Jacob Y.-P., Jeong J., Mahieux P.-Y., Pernin T., Mai-Nhu J., Rougeau P., Martinez H., Meyer V., Morin V., Potier J.-M., Alarcon-Ruiz L., Saadé M., Sedran T., Soive A., Ben-Fraj A., Decreuse S., Mahouche H., Waller V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Marchetti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchetti, M., Gouadec, G., Offroy, M. et al. Raman identification of CaCO3 polymorphs in concrete prepared with carbonated recycled concrete aggregates. Mater Struct 57, 28 (2024). https://doi.org/10.1617/s11527-024-02296-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-024-02296-z

Keywords

Navigation