Skip to main content
Log in

Evaluation of ultrafine calcined clays on LC3 cements on the sulfate requirement, water demand and strength development

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The utilization of clays other than kaolinite, particularly ultrafine clays in ternary blended cement, and their impact on sulfate optimization still need to be better understood. This study investigated the use of high amorphous kaolinite clay and a kaolinite–hematite clay with a high specific surface area (SSA). The aim was to enhance understanding of sulfate balance and its influence on cement hydration when combining different metakaolin:limestone ratios with two different clinker substitution levels. First, sulfate balance was assessed using isothermal calorimetry test varying the total SO3 content from 2.0 to 5.5%. Within the properly sulfated systems, bound water and portlandite content was evaluated by thermogravimetric analysis, setting times by Vicat’s needle test, minimum water demand by mini-slump spread flow test in cement pastes and compressive strength in mortars The results demonstrated a great influence of the additional surface area offsetting the amount of amorphous phase on sulfate optimization. Furthermore, the mechanical strength exhibited remarkable performance compared to an ordinary Portland cement (OPC) system, despite replacing over half of the clinker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Miller SA, John VM, Pacca SA, Horvath A (2018) Carbon dioxide reduction potential in the global cement industry by 2050. Cem Concr Res 114:115–124. https://doi.org/10.1016/j.cemconres.2017.08.026

    Article  CAS  Google Scholar 

  2. Habert G, Miller SA, John VM, Provis JL, Favier A, Horvath A, Scrivener KL (2020) Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat Rev Earth Environ 1:559–573. https://doi.org/10.1038/s43017-020-0093-3

    Article  Google Scholar 

  3. Avet F, Scrivener K (2018) Investigation of the calcined kaolinite content on the hydration of limestone calcined clay cement (LC3). Cem Concr Res 107:124–135. https://doi.org/10.1016/j.cemconres.2018.02.016

    Article  CAS  Google Scholar 

  4. Dhandapani Y, Santhanam M, Kaladharan G, Ramanathan S (2021) Towards ternary binders involving limestone additions—a review. Cem Concr Res 143:106396. https://doi.org/10.1016/j.cemconres.2021.106396

    Article  CAS  Google Scholar 

  5. Costa T, Ricardo P, Matos D, Py L, Longhi M, Cascudo O, Paula A (2022) Ternary cements produced with non-calcined clay, limestone, and Portland clinker. J Build Eng 45:103437. https://doi.org/10.1016/j.jobe.2021.103437

    Article  Google Scholar 

  6. Cancio Díaz Y, Sánchez Berriel S, Heierli U, Favier AR, Sánchez Machado IR, Scrivener KL, Martirena Hernández JF, Habert G (2017) Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies. Dev Eng 2:82–91. https://doi.org/10.1016/j.deveng.2017.06.001.

  7. Rodriguez C, Tobon JI (2020) Influence of calcined clay/limestone, sulfate and clinker proportions on cement performance. Constr Build Mater 251:119050. https://doi.org/10.1016/j.conbuildmat.2020.119050

    Article  CAS  Google Scholar 

  8. Zhang J, Ge L, Chen ZG, Zhu Z (2020) Cracking behaviour and mechanism at grain boundary of gibbsite during calcination. Ceram Int 46:12067–12072. https://doi.org/10.1016/j.ceramint.2020.01.248

    Article  CAS  Google Scholar 

  9. Landers M, Gilkes R (2007) Dehydroxylation and dissolution of nickeliferous goethite in New Caledonian lateritic Ni ore. Appl Clay Sci 35:162–172. https://doi.org/10.1016/j.clay.2006.08.012

    Article  CAS  Google Scholar 

  10. Zhang X, Huestis PL, Pearce CI, Hu JZ, Page K, Anovitz LM, Aleksandrov AB, Prange MP, Kerisit S, Bowden ME, Cui W, Wang Z, Jaegers NR, Graham TR, Dembowski M, Wang HW, Liu J, N’Diaye AT, Bleuel M, Mildner DFR, Orlando TM, Kimmel GA, La Verne JA, Clark SB, Rosso KM (2018) Boehmite and gibbsite nanoplates for the synthesis of advanced alumina products. ACS Appl Nano Mater 1:7115–7128. https://doi.org/10.1021/acsanm.8b01969

    Article  CAS  Google Scholar 

  11. Yusiharni E, Gilkes R (2012) Rehydration of heated gibbsite, kaolinite and goethite: an assessment of properties and environmental significance. Appl Clay Sci 64:61–74. https://doi.org/10.1016/j.clay.2011.12.005

    Article  CAS  Google Scholar 

  12. Minard H, Garrault S, Regnaud L, Nonat A (2007) Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum. Cem Concr Res 37:1418–1426. https://doi.org/10.1016/j.cemconres.2007.06.001

    Article  CAS  Google Scholar 

  13. Scrivener KL, Juilland P, Monteiro PJM (2015) Advances in understanding hydration of Portland cement. Cem Concr Res 78:38–56. https://doi.org/10.1016/j.cemconres.2015.05.025

    Article  CAS  Google Scholar 

  14. Andrade Neto JS, Rodríguez ED, Monteiro PJM, De la Torre AG, Kirchheim AP (2022) Hydration of C3S and Al-doped C3S in the presence of gypsum. Cem Concr Res 152. https://doi.org/10.1016/j.cemconres.2021.106686.

  15. Andrade Neto JS, de Matos PR, De la Torre AG, Campos CEM, Torres SM, Monteiro PJM, Kirchheim AP (2022) Hydration and interactions between pure and doped C3S and C3A in the presence of different calcium sulfates. Cem Concr Res 159:106893. https://doi.org/10.1016/j.cemconres.2022.106893.

  16. da Andrade Neto JS, De la Torre AG, Kirchheim AP (2021) Effects of sulfates on the hydration of Portland cement—a review. Constr Build Mater 279:122428. https://doi.org/10.1016/j.conbuildmat.2021.122428.

  17. Whittaker M, Zajac M, Ben Haha M, Bullerjahn F, Black L (2014) The role of the alumina content of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-slag blends. Cem Concr Res 66:91–101. https://doi.org/10.1016/j.cemconres.2014.07.018.

  18. Zunino F (2020) Limestone calcined clay cements (LC3): raw material processing , sulfate balance and hydration kinetics. École Polytechnique Fédérale de Lausanne.

  19. Zunino F, Scrivener K (2019) The influence of the filler effect on the sulfate requirement of blended cements. Cem Concr Res 126:105918. https://doi.org/10.1016/j.cemconres.2019.105918

    Article  CAS  Google Scholar 

  20. Hay R, Li L, Celik K (2022) Shrinkage, hydration, and strength development of limestone calcined clay cement (LC3) with different sulfation levels. Cem Concr Compos 127:104403. https://doi.org/10.1016/j.cemconcomp.2021.104403

    Article  CAS  Google Scholar 

  21. Abrão PCRA, Cardoso FA, John VM (2020) Efficiency of Portland-pozzolana cements: water demand, chemical reactivity and environmental impact. Constr Build Mater 247. https://doi.org/10.1016/j.conbuildmat.2020.118546.

  22. Sposito R, Maier M, Beuntner N, Thienel KC (2022) Physical and mineralogical properties of calcined common clays as SCM and their impact on flow resistance and demand for superplasticizer. Cem Concr Res 154:106743. https://doi.org/10.1016/j.cemconres.2022.106743

    Article  CAS  Google Scholar 

  23. Hunger M, Brouwers HJH (2009) Flow analysis of water-powder mixtures: application to specific surface area and shape factor. Cem Concr Compos 31:39–59. https://doi.org/10.1016/j.cemconcomp.2008.09.010

    Article  CAS  Google Scholar 

  24. Sposito R, Beuntner N, Thienel KC (2020) Characteristics of components in calcined clays and their influence on the efficiency of superplasticizers. Cem Concr Compos 110:103594. https://doi.org/10.1016/j.cemconcomp.2020.103594

    Article  CAS  Google Scholar 

  25. Zunino F, Scrivener K (2020) Increasing the kaolinite content of raw clays using particle classification techniques for use as supplementary cementitious materials. Constr Build Mater 244:118335. https://doi.org/10.1016/j.conbuildmat.2020.118335

    Article  CAS  Google Scholar 

  26. Taylor-Lange SC, Lamon EL, Riding KA, Juenger MCG (2015) Calcined kaolinite-bentonite clay blends as supplementary cementitious materials. Appl Clay Sci 108:84–93. https://doi.org/10.1016/j.clay.2015.01.025

    Article  CAS  Google Scholar 

  27. Vieira Coelho AC, de Souza Santos H, Kiyohara PK, Marcos KNP, de Souza Santos P (2007) Surface area, crystal morphology and characterization of transition alumina powders from a new gibbsite precursor. Mater Res 10:183–189. https://doi.org/10.1590/S1516-14392007000200015.

  28. Avet F, Li X, Scrivener K (2018) Determination of the amount of reacted metakaolin in calcined clay blends. Cem Concr Res 106:40–48. https://doi.org/10.1016/j.cemconres.2018.01.009

    Article  CAS  Google Scholar 

  29. Rutkowska I, Marchewka J, Jeleń P, Odziomek M, Korpyś M, Paczkowska J, Sitarz M (2021) Chemical and structural characterization of amorphous and crystalline alumina obtained by alternative Sol-Gel preparation routes. Materials (Basel) 14:1761. https://doi.org/10.3390/ma14071761

    Article  CAS  PubMed  Google Scholar 

  30. Arvaniti EC, Juenger MCG, Bernal SA, Duchesne J, Courard L, Leroy S, Provis JL, Klemm A, De Belie N (2015) Determination of particle size, surface area, and shape of supplementary cementitious materials by different techniques. Mater Struct 48:3687–3701. https://doi.org/10.1617/s11527-014-0431-3

    Article  CAS  Google Scholar 

  31. Avet F, Snellings R, Alujas Diaz A, Ben Haha M, Scrivener K (2016) Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cem Concr Res 85:1–11. https://doi.org/10.1016/j.cemconres.2016.02.015.

  32. Mos YM, Vermeulen AC, Buisman CJN, Weijma J (2018) X-Ray diffraction of iron containing samples: the importance of a suitable configuration. Geomicrobiol J 35:511–517. https://doi.org/10.1080/01490451.2017.1401183

    Article  CAS  Google Scholar 

  33. Scrivener K, Ouzia A, Juilland P, Kunhi Mohamed A (2019) Advances in understanding cement hydration mechanisms. Cem Concr Res 124:105823. https://doi.org/10.1016/j.cemconres.2019.105823.

  34. ASTM, C563–20 Standard Guide for Approximation of Optimum SO3 in Hydraulic Cement, ASTM, 2020. https://doi.org/10.1520/C0563-20.

  35. Ferreiro S, Canut MMC, Lund J, Herfort D (2019) Influence of fineness of raw clay and calcination temperature on the performance of calcined clay-limestone blended cements. Appl Clay Sci 169:81–90. https://doi.org/10.1016/j.clay.2018.12.021

    Article  CAS  Google Scholar 

  36. ABNT16697, NBR 16697 Portland Cement - Requirements, (2018) 12.

  37. Palacios M, Kazemi-Kamyab K, Mantellato S, Bowen P (2016) Laser diffraction and gas adsorption techniques. In: A practical guide to microstructural analysis of cementitious materials, p. 40.

  38. Winnefeld B, Scholer F, Lothenback A (2016) Sample preparation. In: Scrivener KL, Snellings R, Lothenbach B (eds) A practical guide to microstructural analysis of cementitious materials. CRC Press, Boca Raton, pp 1–36.

  39. Zea-Garcia JD, De la Torre AG, Aranda MAG, Santacruz I (2020) Processing and characterisation of standard and doped alite-belite-ye’elimite ecocement pastes and mortars. Cem Concr Res 127:105911. https://doi.org/10.1016/j.cemconres.2019.105911

    Article  CAS  Google Scholar 

  40. Lothenbach B, Durdzinski P, De Weerdt K (2016) Themogravimetric analysis. In: A practical guide to microstructural analysis of cementitious materials. CRC Press, Boca Raton, p 36

  41. Wadsö L (2010) Operational issues in isothermal calorimetry. Cem Concr Res 40:1129–1137. https://doi.org/10.1016/j.cemconres.2010.03.017

    Article  CAS  Google Scholar 

  42. Wedding P, Kantro D (1980) Influence of water-reducing admixtures on properties of cement paste—a miniature slump test. Cem Concr Aggregates 2:95. https://doi.org/10.1520/CCA10190J

    Article  Google Scholar 

  43. ABNT, NBR 7215 Portland Cement - Determination of compressive strength test, (2019).

  44. de Matos PR, Andrade Neto JS, Sakata RD, Campos CEM, Kirchheim AP, Rodríguez ED (2022) Effect of superplasticizer addition time and metakaolin source on the early-age hydration of limestone calcined clay cement (LC3). Mater Struct Constr 55:218. https://doi.org/10.1617/s11527-022-02049-w.

  45. Zunino F, Scrivener K (2021) The reaction between metakaolin and limestone and its effect in porosity refinement and mechanical properties. Cem Concr Res 140:106307. https://doi.org/10.1016/j.cemconres.2020.106307

    Article  CAS  Google Scholar 

  46. Tang J, Wei S, Li W, Ma S, Ji P, Shen X (2019) Synergistic effect of metakaolin and limestone on the hydration properties of Portland cement. Constr Build Mater 223:177–184. https://doi.org/10.1016/j.conbuildmat.2019.06.059

    Article  CAS  Google Scholar 

  47. Pavoine A, Brunetaud X, Divet L (2012) The impact of cement parameters on delayed ettringite formation. Cem Concr Compos 34:521–528. https://doi.org/10.1016/j.cemconcomp.2011.11.012

    Article  CAS  Google Scholar 

  48. Tosun K (2006) Effect of SO3 content and fineness on the rate of delayed ettringite formation in heat cured Portland cement mortars. Cem Concr Compos 28:761–772. https://doi.org/10.1016/j.cemconcomp.2006.06.003

    Article  CAS  Google Scholar 

  49. Mota B, Matschei T, Scrivener K (2015) The influence of sodium salts and gypsum on alite hydration. Cem Concr Res 75:53–65. https://doi.org/10.1016/j.cemconres.2015.04.015

    Article  CAS  Google Scholar 

  50. Bérodier EMJ, Muller ACA, Scrivener KL (2020) Effect of sulfate on C-S-H at early age. Cem Concr Res 138:106248. https://doi.org/10.1016/j.cemconres.2020.106248

    Article  CAS  Google Scholar 

  51. Blouch N, Rashid K, Ju M (2023) Exploring low-grade clay minerals diving into limestone calcined clay cement (LC3): Characterization–Hydration–Performance. J Clean Prod 426:139065. https://doi.org/10.1016/j.jclepro.2023.139065

    Article  CAS  Google Scholar 

  52. Liu J, Zhang W, Li Z, Jin H, Tang L (2022) Mechanics, hydration phase and pore development of embodied energy and carbon composites based on ultrahigh-volume low-carbon cement with limestone calcined clay. Case Stud Constr Mater 17:e01299. https://doi.org/10.1016/j.cscm.2022.e01299

    Article  Google Scholar 

  53. Li H, Yang J, Wang L, Li L, Xia Y, Köberle T, Dong W, Zhang N, Yang B, Mechtcherine V (2023) Multiscale assessment of performance of limestone calcined clay cement (LC3) reinforced with virgin and recycled carbon fibers. Constr Build Mater 406:133228. https://doi.org/10.1016/j.conbuildmat.2023.133228

    Article  CAS  Google Scholar 

  54. Cao Y, Wang Y, Zhang Z, Ma Y, Wang H (2023) Thermal stability of limestone calcined clay cement (LC3) at moderate temperatures 100–400 °C. Cem Concr Compos 135:104832. https://doi.org/10.1016/j.cemconcomp.2022.104832

    Article  CAS  Google Scholar 

  55. Spat Ruviaro A, Silvestro L, da Silva Andrade Neto J, Jean Paul Gleize P, Pelisser F (2023) Eco-efficient cement production: investigating water treatment plant sludge and eggshell filler use in LC3 systems. Constr Build Mater 394:132300. https://doi.org/10.1016/j.conbuildmat.2023.132300.

  56. Maier M, Sposito R, Beuntner N, Thienel KC (2022) Particle characteristics of calcined clays and limestone and their impact on early hydration and sulfate demand of blended cement. Cem Concr Res 154:106736. https://doi.org/10.1016/j.cemconres.2022.106736

    Article  CAS  Google Scholar 

  57. Kumar Tiwari A, Chowdhury S (2016) Relative evaluation of performance of limestone calcined clay cement compared with Portland pozzolana cement. J Asian Concr Fed 2:110. https://doi.org/10.18702/acf.2016.12.2.2.110.

  58. Cassagnabère F, Diederich P, Mouret M, Escadeillas G, Lachemi M (2013) Impact of metakaolin characteristics on the rheological properties of mortar in the fresh state. Cem Concr Compos 37:95–107. https://doi.org/10.1016/j.cemconcomp.2012.12.001

    Article  CAS  Google Scholar 

  59. Nair N, Mohammed Haneefa K, Santhanam M, Gettu R (2020) A study on fresh properties of limestone calcined clay blended cementitious systems. Constr Build Mater 254:119326. https://doi.org/10.1016/j.conbuildmat.2020.119326.

  60. Sposito R, Beuntner N, Thienel KC (2020) Characteristics of calcined clay particles and their influence on the efficiency of superplasticizers. Cem Concr Compos 110:103594. https://doi.org/10.1016/j.cemconcomp.2020.103594

    Article  CAS  Google Scholar 

  61. ASTM, C187–16 Standard Test Method for Amount of Water Required for Normal Consistency of Hydraulic Cement Paste, (2016) 3. https://doi.org/10.1520/C0187-16.

  62. ABNT, NBR 16606 Portland cement—determination of normal consistency, (2018) 8.

  63. ASTM, C191–21 Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle (2021) 8. https://doi.org/10.1520/C0191-21.

  64. ABNT, NBR 16607 Portland cement—dDetermination of setting times (2018).

Download references

Acknowledgements

The authors acknowledge the financial support from the Brazilian governmental agencies CNPq and FAPERGS. The participation APK was sponsored by CNPq through the research fellowship PQ 311893/2021-0. The authors acknowledge Intercement S.A. for the financial support. The authors thank Leandro Gralla, Muriel Scopel Froener, Micael Rubens Silva, and Seiiti Suzuki for their important contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Py.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 719 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Py, L.G., Neto, J.S.A., Longhi, M.A. et al. Evaluation of ultrafine calcined clays on LC3 cements on the sulfate requirement, water demand and strength development. Mater Struct 57, 13 (2024). https://doi.org/10.1617/s11527-023-02288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-023-02288-5

Keywords

Navigation